Lecture Notes Package for STEM Core ChemJam

By Jim Zoval, Ph.D.

INCLUDES WORKSHEETS

© 2016 Jim Zoval

Chemistry Chemistry is the study of matter and how it interacts with other ______ and/or ______ Matter and Energy Matter is anything that has ______ and occupies ______.

We can describe matter in terms of ______, those characteristics that can be determined without changing it into a different substance.

• Example: Sugar is white, tastes sweet, and can be crushed into powder. Crushing sugar does not change sugar into something else.

Matter can also be described in terms of its _____ *properties*. Chemical properties of substances describe *how they are converted to new substances* in processes called chemical reactions.

• Example: Caramelization of sugar

Changing the phase of matter, converting matter between solid, liquid, and gas is considered a *physical change* because the identity **does not** change.

• Examples of phase changes are: melting, boiling water to make steam, and melting an iron rod.

Energy

Energy is commonly defined as the ability to do _____.

Energy can be found in two forms, ______ energy and _____energy.

Potential energy is ______ energy; it has the potential to do work.

• An example of potential energy is water stored in a dam. If a valve is opened, the water will flow downhill and turn a paddle connected to a generator to create electricity.

Kinetic energy is the energy of _____.

• Any time matter is moving, it has kinetic energy.

An important law that is central to understanding nature is: **matter will exist in the lowest possible energy state**. Another way to say this is "if matter can lose energy, it will always do so."

Understanding Check: Kinetic Energy vs. Potential Energy

Which are mainly examples of *potential energy* and which are mainly examples of *kinetic energy*?

- a) A mountain climber sits at the top of a peak.
- b) A mountain climber rappels down a cliff.
- c) A hamburger sits on a plate.
- d) A nurse inflates a blood pressure cuff.

Units of Measurements

Measurements consist of two parts – a ______ and a _____.

Commonly Used Units and Their Symbols

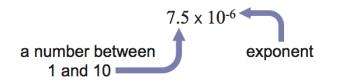
Si Units and Their Symbols			
Quantity	SI Unit Name Symbol		
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Temperature	Kelvin	K	

SI Unite and Their Symbols

Quantity	Unit Name	Symbol
Length	foot inch	ft in
Mass	gram pound	g Ib
Volume	Liter	L
Temperature	Fahrenheit Celsius (or Centigrade)	∘F ∘C

Scientific Notation and Metric Prefixes

Scientific Notation


When making measurements, particularly in science and in the health sciences, there are many times when you must deal with very large or very small numbers.

Example: a typical red blood cell has a diameter of about 0.0000075 m.

In _____ (exponential notation) this diameter is written 7.5×10^{-6} m.

Values expressed in scientific notation are written as a number between _____ and ____ multiplied by a power of 10.

The superscripted number to the right of the ten is called an *exponent*.

• An exponent with a positive value tells you how many times to **multiply** a number by 10.

 $3.5 \ge 10^4 = 3.5 \ge 10 \ge 10 \ge 10 \ge 10 \ge 35000$

• An exponent with a negative value tells you how many times to **divide** a number by 10.

$$3.5 \ge 10^{-4} = \frac{3.5}{10 \ge 10 \ge 10} = 0.00035$$

Converting from Regular Notation to Scientific

1) Move the decimal point to the right of the first (right-most) non-zero number

• The exponent will be equal to the number of decimal places moved.

2) When you move the decimal point to the left, the exponent is positive.

$$35000 = 3.5 \times 10^{4}$$

$$285.2 = 2.852 \times 10^{2}$$

$$8300000 = 8.3 \times 10^{6}$$

3) When you move the decimal point to the right, the exponent is negative.

$$0.00035 = 3.5 \times 10^{-4}$$

$$0.0445 = 4.45 \times 10^{-2}$$

$$0.0000003554 = 3.554 \times 10^{-8}$$

Understanding Check: Convert each number into scientific notation.

a) 0.0144
b) 144
c) 36.32
d) 0.0000098

Converting from Scientific Notation to Regular Notation

You just learned how to convert from regular numerical notation to scientific notation. Now let's do the reverse; convert from scientific notation to regular notation.

Step 1: Note the value of the *exponent*.

- Step 2: The value of the exponent will tell you which direction <u>and</u> how many places to move the decimal point.
 - If the value of the exponent is **positive**, remove the power of ten and move the decimal point that value of places to the *right*.
 - If the value of the exponent is **negative**, remove the power of ten and move the decimal point that value of places to the *left*.

Example: Convert 3.7×10^5 into regular notation.

Step 1: Note the value of the *exponent*: The exponent is **positive 5**.

Step 2: The value of the exponent will tell you which direction <u>and</u> how many places to move the decimal point.

- If the value of the exponent is **positive**, remove the power of ten and move the decimal point that value of places to the *right*.
 - We will move the decimal point 5 places to the *right*.

$$3.7 \longrightarrow 3.70000 \longrightarrow 370000$$

When the decimal point is **not shown** in a number, as in our answer, it is assumed to be *after the right-most digit*.

Let's do another example: Convert 1.604×10^{-3} into regular notation.

Step 1: Note the value of the *exponent*: The exponent is *negative* **3**.

Step 2: The value of the exponent will tell you which direction <u>and</u> how many places to move the decimal point.

- If the value of the exponent is **negative**, remove the power of ten and move the decimal point that value of places to the *left*.
 - We will move the decimal point 3 places to the *left*.

Understanding Check: Convert the following numbers into regular notation.

- a) 5.2789×10^2
- b) 1.78538 x 10⁻³
- c) 2.34×10^6
- d) 9.583 x 10⁻⁵

Measurements and Significant Figures

There are three important factors to consider when making measurements:

- 1) accuracy
- 2) precision
- 3) significant figures

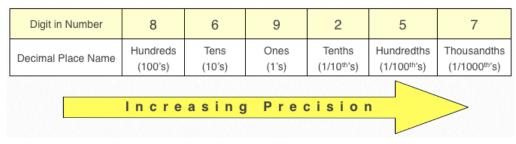
is related to how close a measured value is to a true value.

Example: Suppose that a patient's temperature is taken twice and values of 98 °F and 102 °F are obtained. If the patient's true temperature is 103 °F, the second measurement is more *accurate*.

is a measure of reproducibility.

Example: Suppose that a patient's temperature is taken three times and values of 98 $^{\circ}$ F, 99 $^{\circ}$ F, and 97 $^{\circ}$ F are obtained. Another set of temperature measurements gives 90 $^{\circ}$ F, 100 $^{\circ}$ F, and 96 $^{\circ}$ F.

• The values in the first set of measurements are closer to one another, so they are more precise than the second set.


The quality of the equipment used to make a measurement is one factor in obtaining accurate and precise results. The ability of the human operator to correctly use the measuring device is another factor.

Significant Figures

One way to include information on the ______ of a measured value (or a value that is calculated using measured values) is to report the value using the correct number of significant figures.

The precision of a measured value can be determined by the ______ -most decimal place reported.

• The names and precision of the decimal places for the number **869.257** are shown below:

A simple way to understand significant figures is to say that a digit is significant if we are ______ of its value.

Method for Counting Significant Figures

Measured and calculated values should be reported using significant figures. We can look at a numerical value and determine the number of significant figures as follows:

- If the decimal point is ______, starting from the *left*, count all numbers (including zeros) beginning with the first non zero number.
- If the decimal point is ______, starting from the *right*, count all numbers (including zeros) beginning with the first non zero number.
- When numbers are given in scientific notation, do not consider the power of 10, only the value before " x 10ⁿ."

Example: If the botanist reported the age of the tree as **500 years**, how many significant figures are given?

Note that although the decimal point is implied to be after the right-most zero, it is **absent** (not shown explicitly), therefore we use the decimal point **absent** rule shown above; if the decimal point is **absent**, starting from the *right*, count all numbers (including zeros) beginning with the first non zero number.

- We will start inspecting each digit from right (to left) as shown by the arrow.
- We will start counting when we get to the first non zero number.

500 -

We do not count the first two zeros, but start counting at the **5**. Therefore, there is **one** significant figure present.

Example: If the botanist reported the age of the tree as **500.** years (note the decimal point present), how many significant figures are given?

Note that in this case, the decimal point is **present** (shown), therefore we use the decimal point **present** rule shown above; if the decimal point is **present**, starting from the *left*, count all numbers (including zeros) beginning with the first non zero number. We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

500.

We begin with the **5**, then count <u>all</u> numbers *including zeros*. In this case, the two zeros are also significant. Therefore there are **three** significant figures present.

Outside of the science fields, "500" and "500." are generally thought of as equivalent, however, the use of significant figures tells us that when we write "500." (with the decimal point present) we know that number one hundred times more precisely than when we write "500" (without the decimal point). We have precision to the "ones" decimal place in "500." vs. precision to the "hundreds" place in "500".

Here are some other examples:

Example: How many significant figures are contained in 0.00045?

Note that in this case, the decimal point is **present** (shown). We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

b 0.00045

We begin with the **4**, then count <u>all</u> numbers *including zeros*. Therefore there are **two** significant figures present.

Example: How many significant figures are contained in 0.0002600?

Note that in this case, the decimal point is **present** (shown). We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

• 0.0002600

We begin with the **2**, then count <u>all</u> numbers *including zeros*. Therefore there are **four** significant figures present.

Example: How many significant figures are contained in 7080?

If the decimal point is **absent**, starting from the *right*, count all numbers (including zeros) beginning with the first non zero number. We will start inspecting each digit from right (to left) as shown by the arrow. We will start counting when we get to the first non zero number.

7080 🔸

We do not count the first zero, but start counting at the **8**, and then count <u>*all numbers (including zeros)*</u>. Therefore, there are **three** significant figures present.

Understanding Check: Specify the number of significant figures in each of the values below.	
a) 23.5	f) 6200.
b) 0.0073000	g) 6200.0
c) 6.70	h) 0.6200

i) 0.62

i) 930

Significant Figures in Scientific Notation

d) 48.50

e) 6200

When numbers are given in scientific notation, **do not** consider the power of 10, only the value before " $\times 10^{n}$."

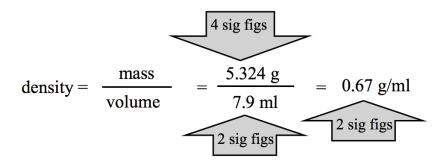
Examples: How many significant figures are contained in each of the values shown below?

- a) 5×10^2 one significant figure
- b) 5.0×10^2 two significant figures
- c) 5.00×10^2 three significant figures

When converting back and forth from standard numerical notation to scientific notation, the number of significant figures used **should not change**.

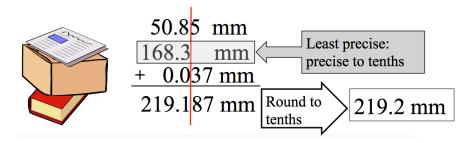
Understanding Check: Write each measured value in *scientific notation*, being sure to use *the correct number of significant figures*.

- a) 5047
- b) 87629.0
- c) 0.00008
- d) 0.07460


Calculations Involving Significant Figures

When doing ______ with measured values, the answer should have *the same number of significant figures* as the measured value with the least number of significant figures.

When doing ______ with measured values, the answer should have the same *precision* as the least precise measurement (value) used in the calculation.


Example for Multiplication or Division:

- When doing *multiplication or division* with measured values, the answer should have *the same number of significant figures* as the measured value with the least number of significant figures.
- Example: If an object has a mass of 5.324 grams and a volume of 7.9 ml, what is its density?

Example for Addition or Subtraction:

- When doing *addition or subtraction* with measured values, the answer should have the same *precision* as the least precise measurement (number) used in the calculation.
- **Example:** A book 50.85 mm thick, a box 168.3 mm thick and a piece of paper 0.037 mm thick are stacked on top of each other. What is the height of the stack?

Understanding Check: Each of the numbers below is measured. Solve the calculations and give the correct number of significant figures.

- a) 0.12 x 1.77
- b) 690.4 ÷ 12
- c) 5.444 0.44
- d) 16.5 + 0.114 + 3.55

Unit Conversions

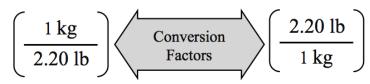
Typical Unit Conversion Problems:

- A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)
- A student is 60.0 inches tall, what is the student's height in cm?
- The temperature in Cabo San Lucas, Mexico is 30°C, what is the temperature in °F?

To convert from one unit to another, we must know the ______ between the two units of measure.

- Examples:
 - A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)
 1kg = 2.20 lb
 - A student is 60.0 inches tall, what is the student's height in cm?
 - -1 inch = 2.54 cm

Unit Relationships to Know:


- 1 milliliter (mL) = 1 cubic centimeter (cm³)
- 1 inch (in) = 2.54 centimeters (cm)
- 1 kilogram (kg) = 2.20 pounds (lb)
- 4.184 Joule (J) = 1 calorie (cal)

The *relationships* between units are called _____

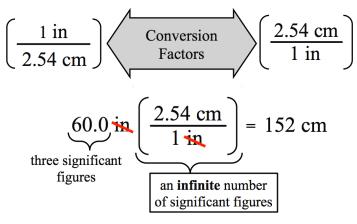

Unit Conversion Calculations: The Factor Label Method

A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)?

Equivalence statement: 1 kg = 2.20 lb

Equivalence statements can be written as

number of significant figures.

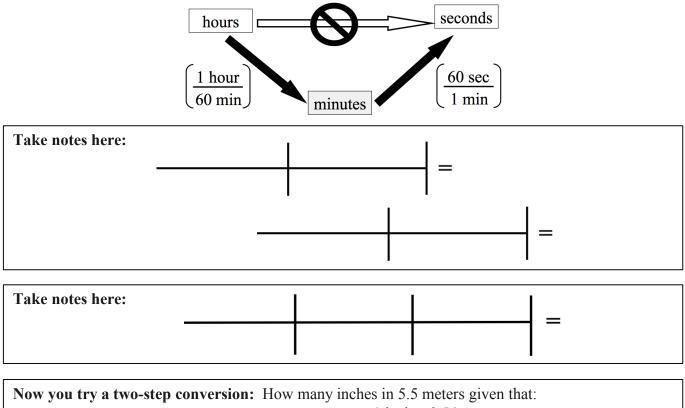

____(defined or agreed upon) conversion factors have an *infinite* number of significant figures.

•Examples of exact/defined conversion factors

- 1 lb = 0.45359237 kg
- 1 inch = 2.54 cm
- $1 \text{ cg} = 10^{-2} \text{g}$
- 1 ft = 12 inches
- $1 \text{ ml} = 1 \text{ cm}^3$

A student is 60.0 inches tall, what is the student's height in cm?

Equivalence statement: 1 inch = 2.54 cm


Take notes here:		
] =

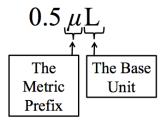
Understanding Check:

- 1) How many ft. (feet) in 379.3 in. (inches)?
 - 1 ft = 12 inches
- 2) How many eggs in 7.5 dozen?12 eggs = 1 dozen
- 3) How many calories in 514 joules?1 calorie = 4.184 joules

Sometimes it takes more than one step!

•Example: How many seconds in 33.0 hours?

- 1 inch = 2.54 cm
- 100 cm = 1 m


Metric Prefixes

Earlier, we used scientific notation to simplify working with very large or very small numbers.

Another way to simplify working with large or small numbers is to use metric _____

Example: The volume of blood required for diabetics to measure blood glucose levels in modern glucometers is about 0.0000005 L.

It is much more practical to use and say:

The metric **prefix** tells the *fraction* or *multiple* of the **base unit(s)**.

• For example, $1 \ge 10^6 \mu L = 1 L$

The base unit can be _____ metric unit:

• liter (L), gram (g), meter (m), joule (J), second (s), calorie (cal)...etc.

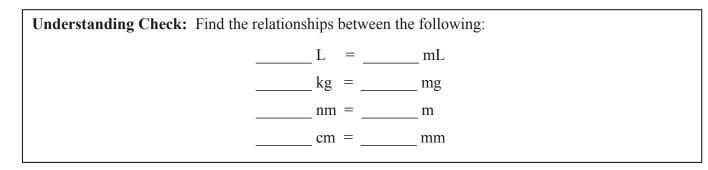
Unit Conversions Within The Metric System

Example: The volume of blood required to measure blood glucose levels in modern glucometers is about 0.0000005 L.

- Question: How can we convert that to μ L?
- Answer: We need the relationship between L and μ L to get the conversion factor.

We will use the "Equality Table":

1 base unit =		
10 d (deci-)	0.1 da (deca-)	
100 c (centi-)	.01 h (hecto)	
1000 m (milli-)	.001 k (kilo)	
$1 \ge 10^{6} \mu$ (micro-)	1 x 10 ⁻⁶ M (mega-)	
1 x 10 ⁹ n (nano)	1 x 10 ⁻⁹ G (giga)	

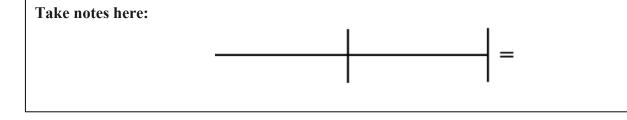

All these quantities in the table are equal; any pair can be used as a conversion factor!!! **Example:** What is the relationship between L (microliters) and liters (L)?

1 base unit (Liters in this problem) =		
10 d (deci-) 0.1 da (deca-)		
100 c (centi-)	.01 h (hecto)	
1000 m (milli-)	.001 k (kilo)	
$1 \ge 10^6 \mu$ (micro-)	1 x 10 ⁻⁶ M (mega-)	
1 x 10 ⁹ n (nano)	1 x 10 ⁻⁹ G (giga)	

Equivalence statement: $1 L = 1 \times 10^6 \mu L$

This table works for **any** units!

The _____ could be gram (g), meter (m), liter (L), joule (J), second (s), mole (mol), calorie (cal)... etc.



Example: How many μ L (microliters) in 0.0000005 L?

$$\left(\frac{1 \text{ x } 10^{6} \mu \text{L}}{1 \text{ L}}\right) \left(\begin{array}{c} \text{Conversion} \\ \text{Factors} \end{array} \right) \left(\begin{array}{c} 1 \text{ L} \\ 1 \text{ x } 10^{6} \mu \text{L} \end{array} \right)$$

Equivalence statement: $1 L = 1 \times 10^6 \mu L$

1 base unit (Liters in this problem) =		
10 d (deci-)	0.1 da (deca-)	
100 c (centi-)	.01 h (hecto)	
1000 m (milli-)	.001 k (kilo)	
1 x 10 ⁶ µ (micro-)	1 x 10 ⁻⁶ M (mega-)	
1 x 10 ⁹ n (nano)	1 x 10 ⁻⁹ G (giga)	

You try one: How many mL (milliliters) in 0.0345 (kL) kiloliters?		
Equivalence statement: mL = kL	1 base unit (Liters	in this problem) =
	10 d (deci-)	0.1 da (deca-)
	100 c (centi-)	.01 h (hecto)
=	(1000 m (milli-)	.001 k (kilo)
	$1 \times 10^6 \mu$ (micro-)	1 x 10 ⁻⁶ M (mega-)
	1 x 10 ⁹ n (nano)	1 x 10 ⁻⁹ G (giga)

You try another one: A vial contains 9758 mg of blood serum. Convert this into grams (g).

Equivalence statement: _____ g = ____ mg

Temperature Unit Conversions

$$^{\circ}F = (1.8 \times ^{\circ}C) + 32$$

 $^{\circ}C = \frac{(^{\circ}F - 32)}{1.8}$
 $K = ^{\circ}C + 273.15$

• Note: The 273.15, 32, and 1.8 in the temperature conversion equations are *exact*.

When doing a calculation that involves **only** multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves **only** addition and/or subtraction. But what about a calculation that involves mixed operations: **both** multiplication or division **and** addition or subtraction?

When doing calculations that involve **both** multiplication or division <u>and</u> addition or subtraction, first do a calculation for the operation *shown in parenthesis* and round that value to the correct number of significant figures, **then** use the rounded number to carry out the next operation.

Example: On a warm summer day, the temperature reaches 85 °F. What is this temperature in °C? The relationship between °F and °C is:

$$^{\circ}C = \frac{(^{\circ}F - 32)}{1.8}$$

First, we do the subtraction (operation in parenthesis) and round the calculated value to the correct number of significant figures based on the rule for addition/subtraction.

Next, we divide that rounded number by 1.8 (exactly 1.8 = 1.80000...) then round the calculated value to the correct number of significant figures using the rule for multiplication/division.

Take notes here:

Chapter 1 Worksheet 1 and KEY

Significant Figures, Scientific Notation, and Rounding

1) Determine the number of significant figures in the following values:

Value	# of sig.	Value	# of sig.
	figures		figures
140.74		4	
0.0041		3.70×10^{14}	
31.00		1.05×10^{12}	
1300		7.0400×10^3	
847.040		2495	

2) Round the following values to 3 significant figures.

3.76411 →	$0.0411984 \rightarrow$
3.76811 →	$150.6142 \rightarrow$
3.76511 →	0.013877 →
11.048176 →	$4.88223 \ge 10^9 \rightarrow$
8.75510 →	$2.0097 \ge 10^{-12} \rightarrow$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded	Calculation	Rounded
	Answer		Answer
18.7644 - 3.472 + 0.4101	=	0.87 + 4.061 + 10.4	=
17.441÷ 3	=	16 x 841.1 ÷ 16.300	=
14.044 + 8.11 + 3.4	=	21.01 x 2.0	=
3.41 - 0.086652	=	18.4 +12.99 +13.772 + 9.704	=

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	
0.0008	
675,000,000	
157,000,000,000,000,000,000,000	
0.000003407	
	7.66×10^{-2}
	7.8×10^5
	4.75×10^{-4}
	6 x 10 ⁻³
	9×10^8

Conversions Within the Metric System:

Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s.

0.50 m =mm	2.00 km =m	0.4000 L =mL
1.00 g =kg	01.00 cm =m	8.00 mm =cm
22.4 L =mL	5.00 g =kg	4.245 L = mL
345 g =kg	10.0 nm =m	3.22 Gg =kg
3.001 cg =mg	1.2 m =μm	455 nm =m

English-Metric Conversions (show your work)

$10.0 \text{ cm} = \underline{\qquad} \text{in}$	$15.0 \text{ lb} = \kg (1kg=2.205 \text{ lb})$
$\frac{1.00 \text{ yd} = _}{(1 \text{ yard} = \text{exactly 36 in})} \text{ cm}$	$ \begin{array}{c} 16.9 \text{ fl. oz} = ___L \\ (0.0338 \text{ fl oz.}=1 \text{ mL}) \end{array} $
$1.00 \text{ qt} = \ L(1 \text{ qt} = 946 \text{ mL})$	6.00 in =cm
$0.800 \text{ kg} = _oz$ (16 oz = exactly 1 lb and 1kg=2.205 lb)	$ \begin{array}{c} 1.83 \text{ kg} = _ lb \\ (1 \text{ kg} = 2.205 \text{ lb}) \end{array} $
25.00 mL =qt (1qt = .946L)	$1.40 L = \underline{\qquad} = cm^{3}$ note: 1 mL = exactly 1 cm ³

Temperature Conversions

Recall the Temperature Conversions from Chapter 1 lecture notes:

- $^{\circ}F = (1.8 \text{ x} ^{\circ}C) + 32$
- $^{\circ}C = (^{\circ}F 32) / 1.8$
- $K = {}^{o}C + 273.15$

NOTE: In temperature conversion equations, the 273.15, 32 and 1.8 are *exact.*

IMPORTANT: When doing a calculation that involves **only** multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves **only** addition and/or subtraction.

But what about a calculation that involves mixed operations: **both** multiplication or division *and* addition or subtraction?

When doing calculations that involve **<u>both</u>** multiplication or division *and* addition or subtraction, first do a calculation for the operation *shown in parenthesis* and round that value to the correct number of significant figures, **then** use the rounded number to carry out the next operation.

Perform the following temperature conversions (show your calculation)

$75^{\circ}C = $ K
$-15^{\circ}C = $ K
$0.00 \text{ K} = \^{\circ} \text{C} = \^{\circ} \text{F}$
$25^{\circ}C \text{ (room temperature)} = \ K$
98.6 °F (body temperature) = °C
$25^{\circ}C = \{\circ}F$
-40.0 °C = °F
412 K = °F

Chapter 1 Worksheet 1 and KEY

Value	# of sig.	Value	# of sig.
	figures		figures
140.74	5	4	1
0.0041	2	3.70×10^{14}	3
31.00	4	1.05×10^{12}	3
1300	2	7.0400×10^3	5
847.040	6	2495	4

Significant Figures, Scientific Notation, and Rounding 1) Determine the number of significant figures in the following values:

2) Round the following values to 3 significant figures.

3.76411 → 3.76	0.0411984 →0.0412
3.76811 → 3.77	$150.6142 \rightarrow 151$
3.76511 →3.77	$0.013877 \rightarrow 0.0139$
11.048176 →11.0	$4.88223 \times 10^9 \rightarrow 4.88 \times 10^9$
8.75510 →8.76	$2.0097 \text{ x } 10^{-12} \rightarrow 2.01 \text{ x } 10^{-12}$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded	Calculation	Rounded
	Answer		Answer
18.7644 - 3.472 + 0.4101	= 15.703	0.87 + 4.061 + 10.4	= 15.3
17.441÷ 3	= 6	16 x 841.1 ÷ 16.300	= 830
14.044 + 8.11 + 3.4	= 25.6	21.01 x 2.0	= 42
3.41 - 0.086652	= 3.32	18.4 +12.99 +13.772 + 9.704	= 54.9

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	4.7×10^4
0.0008	8 x 10 ⁻⁴
675,000,000	6.75×10^8
157,000,000,000,000,000,000,000	$1.57 \ge 10^{23}$
0.000003407	3.407 x 10 ⁻⁷
0.0766	7.66 x 10 ⁻²
780,000	7.8×10^5
0.000475	4.75×10^{-4}
0.006	6×10^{-3}
900,000,000	9×10^8

Metric System:

Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s).

$0.50 \text{ m} = 5.0 \text{ x } 10^2 \text{ mm}$	2.00 km =2	$2.00 \times 10^3 m$	$0.4000 L = 4.000 \times 10^{2} mL$ or 400.0 mL	
$1.00 \text{ g} = _1.00 \text{ x } 10^{-3} \text{ kg}$ or .00100 kg	01.00 cm = 0.0100 m or $1.00 \text{ x} 10^{-2} \text{ m}$		8.00 mm = 0.800 cm or $8.00 \text{ x } 10^{-1} \text{ cm}$	
$22.4 L = 2.24 \times 10^4 mL$ or 22400 mL	$5.00 \text{ g} = 5.00 \text{ x } 10^{-3} \text{ kg}$ or .00500 kg		4.245 L = 4245 mL or 4.245 x 10 ³ mL	
$345 \text{ g} = _0.345_\text{kg}$ or 3.45 x 10- ¹ kg	$\frac{10.0 \text{ nm} = 1.00 \text{ x } 10^{-8} \text{ m}}{\text{or } .0000000100 \text{ m}}$		$3.22 \text{ Gg} = 3.22 \times 10^{6} \text{ kg}$ or 3220000 kg	
$3.001 \text{ cg} = \underline{30.01}_{\text{mg}}$	$\frac{1.2 \text{ m} = _1.2 \text{ x } 10^{6} _\mu\text{m}}{\text{or } 1200000 \ \mu\text{m}}$		$455 \text{ nm} = _4.55 \text{ x } 10^{-7} \text{ m}$ or .000000455 m	
English-Metric Conversions	(show your wo			
10.0 cm = 3.94 in		15.0 lb = 6.80 kg		
1.00 yd = 91.4 cm		16.9 fl. oz = 0.500 L (0.0338 fl oz.= 1 mL)		
$1.00 \text{ qt} = \0.946 \L$		6.00 in = <u>15.2</u> cm		
0.800 kg = 28.2 oz (100)	6 oz = 1 lb) 1.83 kg =		lb	

<u>**Temperature Conversions</u>** Perform the following temperature conversions (show your calculation)</u>

Perform the following temperature conversions (show your calculation)
$75^{\circ}C = 348 K$
$-15^{\circ}C = 258 K$
$0.00 \text{ K} = -273.15 ^{\circ}\text{C} = -459.67 ^{\circ}\text{F}$
0.00 K = -273.13 C = -433.07 T
$25^{\circ}C \text{ (room temperature)} = \underline{298} \text{ K}$
98.6 °F (body temperature) = 37.0 °C
$25^{\circ}C = \underline{77}^{\circ}F$
$25 \text{ C} = \underline{11} \text{ I}$
$-40.0 ^{\circ}\text{C} = \underline{-40.0} ^{\circ}\text{F}$
412 K = 282 °F

Chapter 1 Worksheet 1 and KEY

Significant Figures Worksheet

1. Indicate how many significant figures there are in each of the following measured values.

246.32	1.008	700000
107.854	0.00340	350.670
100.3	14.600	1.0000
0.678	0.0001	320001

2. Calculate the answers to the appropriate number of significant figures.

32.567	246.24	658.0
135.0	238.278	23.5478
+ 1.4567	+ 98.3	+ 1345.29_

3. Calculate the answers to the appropriate number of significant figures.

a) 23.7 x 3.8	=	e) 43.678 x 64.1	=
b) 45.76 x 0.25	=	f) 1.678/0.42	=
c) 81.04 x 0.010	=	g) 28.367 / 3.74	=
d) 6.47 x 64.5	=	h) 4278 / 1.006	=

Significant Figures Worksheet Key

1. Indicate how many significant figures there are in each of the following measured values.

246.32	<u>5 sig figs</u>	1.008	4 sig figs	700000	<u>1 sig fig</u>
107.854	<u>6 sig figs</u>	0.00340	<u>3 sig figs</u>	350.670	6 sig figs
100.3	4 sig figs	14.600	5 sig figs	1.0000	5 sig figs
0.678	3 sig figs	0.0001	1 sig fig	320001	6 sig figs

2. Calculate the answers to the appropriate number of significant figures.

32.567	246.24	658.0
135.0	238.278	23.5478
+ 1.4567	<u>+ 98.3</u>	+ 1345.29
169.0	582.8	2026.8

3. Calculate the answers to the appropriate number of significant figures.

a) 23.7 x 3.8	= <u>90.</u>	e) 43.678 x 64.1	= 2.80 x 10 ³
b) 45.76 x 0.25	= <u>11</u>	f) 1.678/0.42	= <u>4.0</u>
c) 81.04 g x0.010	=	g) 28.367 / 3.74	= <u>7.58</u>
d) 6.47 x 64.5	= 417	h) 4278 / 1.006	= <u>4252</u>

Unit Conversions Worksheet

Complete each of the following conversions to the proper number of significant figures; clearly show your set-up with units in the set-up and the answer.

1) 0.30 m	=	_ mm	8) 5.00 g =	kg
2) 5.00 mm	=	_ cm	9) 1.00 yd = (3 ft = 1 yard, exactly)	_ cm
3) 10.0 cm	=	_ in	10) 6.35 g =	kg
4) 2.00 km	=	_ m	11) 8.245 L =	_ mL
5) 33.4 L	=	_ mL	12) 16.9 fl. oz= (0.0338 fl oz.= 1 mL)	L
6) 15.0 lb (use 2.20 lb =		_ kg	13) 1.00 cm =	m
7) 0.400 L	=	_ mL	14) 345 g =	_ kg

See next page for Key

Unit Conversion Worksheet Key

- 1) 0.30 m = 3.0×10^2 mm
- 2) 5.00 mm = 0.500 cm <u>or</u> 5.00 x 10^{-1} cm
- 3) 10.0 cm = 3.94 in
- 4) 2.00 km = $2.00 \times 10^3 \text{ m}$
- 5) 33.4 L = $3.34 \times 10^4 \text{ mL} \text{ or} 33400 \text{ mL}$
- 6) 15.0 lb = 6.82 kg
- 7) 0.400 L = 400. mL or 4.00×10^2 mL
- 8) 5.00 g = 5.00 x 10^{-3} kg or 0.00500 kg
- 9) 1.00 yd = 91.4 cm
- 10) 6.35 g = 0.00635 kg or 6.35 x 10^{-3} kg
- 11) 8.245 L = 8245 mL or $8.245 \times 10^3 \text{ mL}$
- 12) 16.9 fl. oz = 0.500 L or 5.00×10^{-1} L
- 13) 1.00 cm = 0.0100 m or 1.00 x 10^{-2} m
- 14) 345 g = 0.345 kg or 3.45×10^{-1} kg

Educational Goals

- 1. Describe the subatomic structure of an atom.
- 2. Define the terms element and atomic symbol.
- 3. Understand how elements are arranged in the periodic table based on the number of protons they contain.
- 4. Understand how atomic number and mass number are used to indicate details of an atom's nucleus.
- 5. Know how **isotopes** of an element differ from one another.
- 6. Define the term **mole** and describe the relationship between **moles** and **molar mass**.
- 7. Given the **molar mass** of an element, convert between number of atoms, number of moles, and mass (grams).

An Introduction to Atoms

Matter (stuff) is made of _____.

Model of the Atom

Check your current model:	Draw a carbon atom.

Atoms are made of _____ particles.

There are *three* types of subatomic particles that will make up our atomic model:

 1.

 2.

 3.

Protons and neutrons are compacted together in what we call the ______ of an atom. Electrons are distributed in space around the nucleus.

• They are moving very fast in a volume surrounding the nucleus.

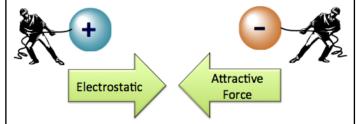
Atoms are mostly empty space.

Electrical Charge

There are a few fundamental properties of nature.

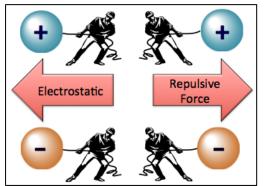
• Examples: Gravity, magnetism, and mass.

Another fundamental property in nature is ______.


Particles may or may not have electrical charge.

There are two types of electrical charge; we arbitrarily call one type _____ and the other type

Every thing we discuss in this course ultimately occurs because of the interaction of these two types of charges.


Particles with *opposite charges attract* each other.

The natural attraction is called

force.

Oppositely charged particles will accelerate **toward** one another if not held apart.

Particles with *like charges repel* each other.

The natural repulsion is called

_____ force.

Like charged particles will accelerate **away** from one another if not held together.

Subatomic Particles

1) Protons

Protons are ______ charged particles located in the ______ of an atom.

The number of protons a particular atom contains determines that atom's identity.

• For example, any atom that contains just **one proton** is called *hydrogen*. An atom with **two protons** is called *helium*. An atom with **six protons** is called *carbon*.

Historically, matter with different numbers of protons, such as hydrogen, helium, and carbon were called the ______.

There are 92 elements that occur in nature. About 25 others have been man-made by slamming two atoms together causing their nuclei to combine, however these new atoms do not last long (fractions of a second up to one year), they break apart into smaller atoms.

A modern periodic table of the elements is shown on the next page.

• You can download a copy of this periodic table at: http://www.zovallearning.com/GOBlinks/ch2/periodictablezovalbasic.pdf

VIII Noble Gases	$\frac{2}{He}_{\rm Helium}_{\rm 4.003}$	10 Neon Neon 18 Ar Arean	^{39.948} 36 Kr	Krypton 83.80	54 Xe	Xenon 131.29	86 Rn	Radon (222)		71	Lu	Luteuum 174.967	103	Lr	(262)
	VII Halogens	9 F EFluorine 8.998403 17 CI Chlorine	35.4527 35 Br	Bromine 79.904	53 I	Iodine 126.90447	85 At	Astatine (210)		70	Yb		102	No Nobelium	
	IV I	8 8 0 0 0 xygen 15.9994 1 16 S S Sulfar	^{32.066} 34 Se	Selenium 78.971	52 Te	в о	84 Pa	Polonium (209)		69	Tm	168.93422	101	Md	(258)
	>	7 N Nitrogen 14.0067 15 Phosphorus	30.973762 33 As	Arsenic 74.92160	51 Sb	Antimony 121.760	R i 83	Bismuth 208.98038		68	Er	Erolum 167.26	100	Fm	remium (257)
	N		32 32 Ge		50 S n	0	82 Ph			67	Ho The second second	Holmium 164.93033	66	Es	Einsteinium (252)
	III	$\begin{array}{c} 5 \\ \mathbf{B}^{\text{Boron}} \\ \mathbf{B}^{\text{Boron}} \\ 10.811 \\ 13 \\ \mathbf{AI} \\ \mathbf{AI} \\ \mathbf{AIminum} \end{array}$	31 31 Ga	Gallium 69.723	49 In	Indium 114.818	81 TI	Thallium 204.3833		99	Dy	162.50	98		(251)
			30 Zn	Zinc 65.39	48 Cd	Cadmium 112.414	80 Ho	Mercury 200.59		65	$\mathbf{T}\mathbf{b}$	1 eroium 158.92534	79	Bk	Berkelium (247)
nts			29 Cu	Copper 63.546	47 Ag	Silver 107.8682	79 A	Gold 196.96657		64	Gd	157.25	96	Cm	Currum (247)
leme			28 Ni	Nickel 58.6934	46 Pd	Palladium 106.42	78 Pt	Platinum 195.078				Europium 151.964	65	Am	Amencium (243)
Table of the Elements			27 Co	Cobalt 58.933194	45 Rh	Rhodium 102.90550	77 Ir	Iridium 192.217	109 Mt Meitnerium (266)	62		Samarium 150.36	94	Pu	Plutonium (244)
le of			26 Fe	Iron 55.845		Ru 1	76 0	Osmium 190.23	108 Hs Hassium (265)	61	Pm	(145) (145)	63	Np	9 (237)
			25 Mn	Manganese 54.938044		Ē	75 R e	Rhenium 186.207		09	Nd	Neodymiu 144.24	92	U	Uranium 238.028
Periodic			24 Cr	Chromium 51.9961	42 Mo	Molybdenum 95.95	74 V	Tungsten 183.84	$\begin{array}{c} 106\\ \mathbf{Sg}\\ \text{Seaborgium}\\ (263)\end{array}$	59	Pr	140.90766	91	Pa	Protacunium 231.03588
Pe			v 23	Vanadium 50.9415	41 N b	Niobium 92.90637	73 Ta	Tantalum 180.9479	105 Db ^{Dubnium} (262)	58	Ce	Cenum 140.116	06	Th	1 norium 232.0377
			22 Ti	Titanium 47.867	40 Zr	Zirconium 91.224	72 Hf	ц	104 Rf Rutherfordium (261)						
			21 Sc	Scandium 44.955908	39 Y	Yttrium 88.90584	57 La	Lanthanum 138.90545	$\begin{array}{c} 89\\ \mathbf{Ac}\\ \mathbf{Actinium}\\ (227)\end{array}$						
	II Alkaline Earth Metals	4 Be Beryllium 9.012183 12 Mg Manesium	24.3050 20 Ca	Calcium 40.078	38 Sr	Strontium 87.62	56 R a		88 Ra dium (226)						
I Alkali Metals	1 Hydrogen 1.0079	3 Li Lithium 6.941 11 Na Sodium	19 K	Potassium 39.0983	37 Rb	Rubidium 85.4678	22 Č	Cesium 132.90545	$\begin{array}{c} 87\\ \mathbf{Fr}\\ \mathbf{Francium}\\ (223)\end{array}$						

Note that each element is represented by its **atomic** (a one- or two-letter name abbreviation) and occupies a box in the table.

Above each element's symbol is the ______.

The **atomic number** tells us the ______ of _____ in an atom of that particular element.

- Example: Look at carbon, symbol C, atomic number 6. Carbon has an atomic number of *six* because an atom with six protons is called carbon. If it had *seven* protons, it would not be carbon it would be nitrogen and have an atomic number of 7.
- Atomic number can be abbreviated using "Z."
 - For example, with carbon, $\mathbf{Z} = 6$, with hydrogen, $\mathbf{Z} = 1$.
- Elements are ordered in the periodic table by *increasing* atomic number.

2) Electrons

Electrons are *negatively charged* subatomic particles.

They are light-weight particles that move extremely fast.

- For the remainder of chapter 2 we can visualize the electrons as bees flying around a beehive (the bee hive represents the nucleus). In chapter 3 you will learn more details about the regions around the nucleus that the electrons can occupy.
- Electrons are very light compared to protons and neutrons.
- Protons and neutrons are about 2000 times **heavier** than electrons and therefore compose most of an atom's mass.

<u>3)</u> Neutrons

Neutrons are located in the _____ (with the protons).

Neutrons **do not** have electrical charge; we say they are *electrically*

The names, charges, and symbols for the three types of subatomic particles are shown below:

SUBATOMIC PARTICLE	SYMBOL	CHARGE
PROTON	p	positive (1+)
NEUTRON	n	none
ELECTRON	e or e⁻	negative (1-)

How many neutrons are in an atom?

We cannot determine the number of neutrons in an atom based on the number of protons.

• This is because atoms of a particular element *do not all have the same number of neutrons*.

Example: Some carbon atoms have *six neutrons*, some have *seven neutrons*, and some have *eight neutrons*.

• These three different forms of carbon are called ______ of carbon.

Isotopes are defined as atoms with the *same* number of protons (same element), but a *different* number of neutrons.

You learned that an atom's *"atomic number* (Z)" is the *number of protons* it contains.

When considering the number of neutrons in an isotope of a particular atom, it is useful to learn a new term called "**mass number**."

The ______ of an atom is defined as *the number of protons plus the number of neutrons*.

mass number = number of protons + number of neutrons

Mass number can be abbreviated using "A."

	SYMBOL	DEFINITION
ATOMIC NUMBER	Z	number of protons
MASS NUMBER	A	number of protons + number of neutrons

Example: How many neutrons are in a sodium (Na) atom that has a mass number of 23?

Take notes here:

Understanding Check: How many neutrons are in a carbon (C) atom that has a *mass number* of 14?

You will often see one of two "shorthand notation" methods used to differentiate the various isotopes:

Method 1: Write the *element symbol*, a dash, then the *mass number* (A)

Let's use our three isotopes of carbon for examples:

NUMBER OF NEUTRONS	SHORTHAND
IN THE CARBON ATOM	NOTATION
6	C-12
7	C-13
8	C-14

Method 2: Write the *element symbol*, we superscript the *mass number* (A) to the left of the symbol.

NUMBER OF NEUTRONS	SHORTHAND
IN THE CARBON ATOM	NOTATION
6	¹² C
7	¹³ C
8	¹⁴ C

- Although redundant, sometimes the atomic number (Z) is also subscripted to the left of the symbol.
 - For example:

Understanding Check: Fill in the blanks for the following isotopes:

a. ¹⁴N number of protons ____ number of neutrons ____ atomic number ___ mass number ___b. ¹⁵N number of protons ___ number of neutrons ___ atomic number ___ mass number ___c. ⁴²Ca number of protons ___ number of neutrons ___ atomic number ___ mass number ___d. ¹H number of protons ___ number of neutrons ___ atomic number ___ mass number ___

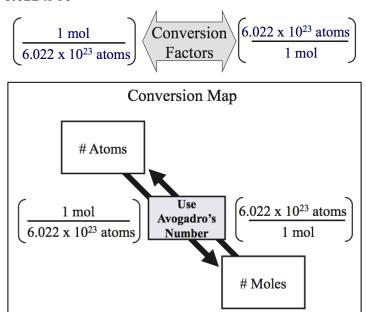
Atoms are *electrically neutral*; their total charge is equal to zero.

• They have the same number of electrons (-) as protons (+), so the positive and negative charges add up to zero (cancel).

The Mole

Atoms are so tiny and small in mass that it is more convenient to do calculations with a large number of atoms

- Just like bakers and chefs use eggs by the dozen, chemists use atoms and molecules by the mole.
 - A ______ is a counting unit used for atoms and molecules.
 - A ______ is any term that refers to a specific number of things.
 - a couple = 2 items (e.g. people)
 - a dozen = 12 items (e.g. eggs, donuts)
 - a mole = 6.022×10^{23} (e.g. atoms, molecules)


The Chemist's Mole

- **One mole** of anything represents 6.022×10^{23} of the things.
- This is referred to as **Avogadro's number**.
- 1 mole = 6.022×10^{23}

Understanding Check: How many atoms are in *1 mole* of helium (He)?

Because the mole is the standard counting unit used to indicate the number of atoms present in a sample, it is useful to **convert** back and forth from *moles* to *atoms*.

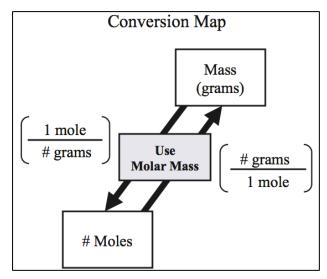
- Use our *conversion factor* method.
- The *relationship* between # of atoms and moles is:
 - 1 mole = 6.022×10^{23}

Take notes here:

You try one: How many moles are 2.9×10^{12} F atoms?

The Mole and Mass

- The ______ of an element is equivalent to the mass (in grams) of one ______ of an element is equivalent to the mass (in grams) of one
- Molar mass is given in the *periodic table* ______ the symbol of the element.
 - Molar mass units: ______
 - Example: Carbon molar mass is ______
 - Another example:
 - 1 mole of argon (Ar) = 39.95 g
 - Molar mass of argon is 39.95 g/mole


Understanding Check:

1 mole of C =_____ grams of carbon (C) = _____ atoms of C

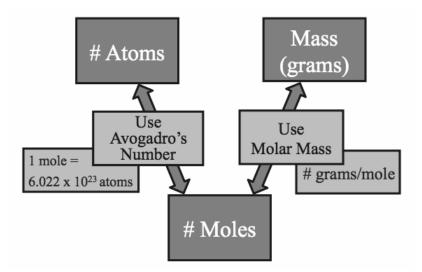
1 mole of Al = _____ grams of aluminum (Al) = _____ atoms of Al

Because the molar mass gives us the ______between the number of moles and the mass of an element, it can be used to ______back and forth between moles and mass (in grams).

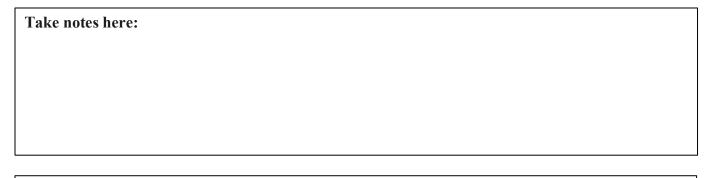
- Use our conversion factor method

Example: Carbon

- The relationship between # of moles of carbon and grams of carbon is:
 - -1 mole Carbon = 12.01 g
- This can be written as conversion factors:


$$\left(\frac{1 \text{ mole C}}{12.01 \text{ grams C}}\right) \left(\begin{array}{c} \text{Conversion} \\ \text{Factors} \end{array} \right) \left(\begin{array}{c} \frac{12.01 \text{ grams C}}{1 \text{ mole C}} \right)$$

Example Problem: What is the mass of 0.770 moles of carbon?


Take notes here:

You try one: How many moles are there in 50.0 g of lead?

Converting Between the Number of Atoms and Grams

Example: (atoms to grams) What is the mass of 2.50×10^{21} Lead (Pb) atoms?

You try one: (grams to atoms) Compute the number atoms in 10.0 g of Aluminum (Al)?

The Periodic Table

As we continue to build our model of atoms and matter in later chapters, we will gain more understanding of why the elements are arranged as they are in the periodic table and how the periodic table can be very useful in predicting the chemical and physical properties of matter.

CATEGORY	PROPERTIES			
Metals	 Good conductors of heat and electricity Ductile (can be pulled into wires and pounded flat) Have a luster 			
Nonmetals	Poor conductors of heat and electricityBrittle (break or shatter if bent or hammered)			
Metalloids (sometimes called Semimetals)	Intermediate conductors of heat and electricity			

Classification of Elements Based on Electrical and Heat Conduction

1			Me	tals		Nonn	netals		Meta	lloids							2
H (Green) (Blue) (Red)							He										
3 4 5 6						7	8	9	10								
Li Be B C N O F							Ne										
11 12 13 14 15 16 17								18									
Na	Mg											Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Elements in the periodic table are arranged in columns called ______ (sometimes, but much less often, called **Families**).

• Sometimes these groups are shown with group numbers in Roman numerals above the column.

	Ι																	VIII
1	1			s-Bl	lock		p-B	lock										2
1	Η	II											III	IV	V	VI	VII	He
2	3	4		d-B	lock	the f-Block					5	6	7	8	9	10		
Ζ	Li	Be											В	С	Ν	0	F	Ne
3	11	12				Tra	nsitio	n Me	tals				13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	87	88	89	104	105	106	107	108	109									
/	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
					_							(Inn	er) Tr	ansiti	on Me	etals		
					58	59	60	61	62	63	64	65	66	67	68	69	70	71
	6	L	antha	nthonidad				Tb	Dv	Ho	Er	Tm	Yb	Lu				
	-		Acti					97	98	99	100	101	102	103				
	7		- /		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The elements in Group I (also called Group 1A) are called the _____ metals.

• Although it is not a metal, note that hydrogen is in this group *for reasons that I will discuss in chapter 3*.

The elements in **Group II** (also called group 2A) are called the ______ *earth metals*.

The elements in **Group VII** (also called group 7A) are called the ______.

The elements in **Group VIII** (also called group 8A) are called the _____.

The elements in **Group I** and **Group II** are in what is called the ______-Block.

The elements in Groups III - VIII are in the _____-Block.

The ______, *located between the s- and p-Blocks*, are in the _____**-Block**.

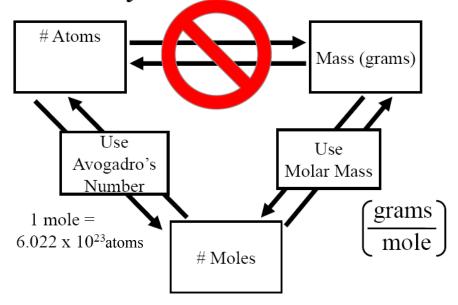
The Inner Transition Metals, located in the bottom two rows of the periodic table are in the _____-Block.

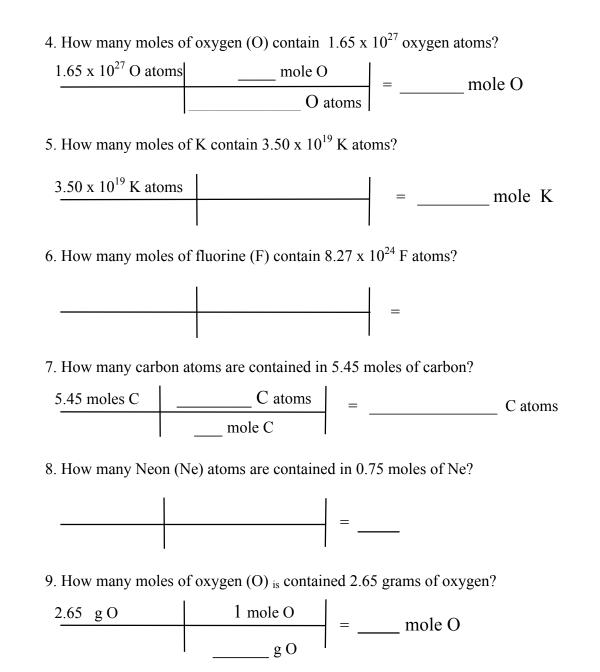
• They are called *lanthanides* (top row of the *f-Block*) and *actinides* (bottom row of the *f-Block*).

The *rows* in the periodic table are called ______.

• The periods are often numbered to the left of each row.

Chapter 2: Atomic Molar Mass Worksheet and Key


1. Complete the following table:


Symbol	Symbol-Mass Number	Atomic #	Mass #	# protons	# neutrons	# electrons
⁷ ₃ Li						
	Mo-96					
				49	53	
			72			35
²³⁸ 92U						

Answer the following questions. *Be sure to write units with every number and to use the correct number of significant figures*. Use two digits to the right of the decimal place for molar masses when possible, then your final answer will match the key exactly.

- 1. What is the molar mass of the following elements?
 - a) B _____ b) Zn ____ c) He _____
- 2. What is the mass (grams) of one mole of Xenon?
- 3. How many atoms are in one mole of Xenon?

Use the conversion map below to solve the following problems

10. How many moles of potassium (K) is contained 8.44 grams of potassium?

$$\frac{8.44 \text{ g K}}{\text{mole K}} = \underline{\qquad} \text{mole K}$$

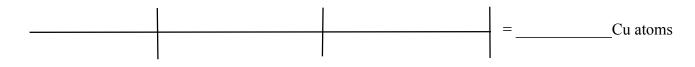
11. How many g of Xe is contained in 0.054 moles of Xe?

12. How many g of C is contained in 39.5 moles of C?

_____ = ____

13. What is the mass (grams) of 5.00×10^{24} oxygen atoms?

5.00 x 10 ²⁴ atoms O	mole O	g O	– gO
	atoms O	mole O	g0


14. What is the mass (grams) of 1.00×10^6 sodium (Na) atoms?

1.($00 \ge 10^6$ Na atoms			
_			=	g Na

15. How many iron atoms are in 10.0 grams of iron (Fe)?

10.0 g Fe	mole Fe	Fe atoms	= Fe atoms
	g Fe	mole Fe	

16. How many copper (Cu) atoms are in a 257 gram copper pipe?

See next page for KEY

KEY

Symbol	Symbol- Mass Number	Atomic #	Mass #	# protons	# neutrons	# electrons
⁷ ₃ Li	Li-7	3	7	3	4	3
96 42 Mo	Mo-96	42	96	42	54	42
¹⁰² ₄₉ In	In-102	49	102	49	53	49
⁷² ₃₅ Br	Br-72	35	72	35	37	35
²³⁸ 92U	U-238	92	238	92	146	92

1. Complete the following table:

Answer the following questions. *Be sure to write units with every number and to use the correct number of significant figures*. Use **two digits to the right of the decimal place for molar masses when possible**, then your final answer will match the key exactly.

1. What is the molar mass of the following elements?

a) B 10.81g/mole b) Zn 65.39 g/mole c) He 4.00 g/mole

2. What is the mass (grams) of one mole of Xenon? 131.29 g

3. How many atoms are in one mole of Xenon? 6.022×10^{23}

4. How many moles of oxygen (O) contain 1.65×10^{27} oxygen atoms?

 $\frac{1.65 \times 10^{27} \text{ O atoms}}{6.022 \times 10^{23} \text{ O atoms}} = 2740 \text{ mole O } \frac{\text{or}}{\text{or}} 2.74 \times 10^3 \text{ mole O}}{\text{Note: 3 significant figures!!!}}$

5. How many moles of K contain 3.50×10^{19} K atoms?

 $\frac{3.50 \times 10^{19} \text{ K atoms}}{6.022 \times 10^{23} \text{ K atoms}} = 5.81 \times 10^{-5} \text{ mole K}$

6. How many moles of fluorine (F) contain 8.27 x 10^{24} F atoms?

 $\frac{8.27 \times 10^{24} \text{ F atoms}}{6.022 \times 10^{23} \text{ F atoms}} = 13.7 \text{ mole F}$

7. How many carbon atoms are contained in 5.45 moles of carbon?

 $5.45 \text{ moles C} \qquad 6.022 \text{ x } 10^{23} \text{C} \text{ atoms} = 3.28 \text{ x } 10^{24} \text{ C} \text{ atoms}$ 1 mole C

8. How many Neon (Ne) atoms are contained in 0.75 moles of Ne?

$$\frac{0.75 \text{ moles Ne}}{1 \text{ mole Ne}} = 4.5 \times 10^{23} \text{ Ne atoms}$$

9. How many moles of oxygen (O) is contained 2.65 grams of oxygen?

10. How many moles of potassium (K) is contained 8.44 grams of potassium?

$$\frac{8.44 \text{ g K}}{39.10 \text{ g K}} = 0.216 \text{ mole K}$$

11. How many g of Xe is contained in 0.054 moles of Xe?

$$0.054 \text{ moles Xe} \qquad 131.29 \text{ g Xe} = 7.1 \text{ g Xe} \text{ (NOTE: 2 significant figures)}$$

$$1 \text{ mole Xe} = 7.1 \text{ g Xe} \text{ (NOTE: 2 significant figures)}$$

12. How many g of C is contained in 39.5 moles of C?

$$\frac{39.5 \text{ mole C}}{1 \text{ mole C}} = 474 \text{ g C}$$

13. What is the mass (grams) of 5.00×10^{24} oxygen atoms?

$$5.00 \times 10^{24} \text{ atoms O} \qquad 1 \text{ mole O} \qquad 16.00 \text{ g O} = 133 \text{ g O}$$

$$6.022 \times 10^{23} \text{ O atoms} \qquad 1 \text{ mole O} = 133 \text{ g O}$$

14. What is the mass (grams) of 1.00×10^6 sodium (Na) atoms?

 $\frac{1.00 \text{ x } 10^{6} \text{ Na atoms}}{6.022 \text{ x } 10^{23} \text{ Na atoms}} \frac{22.99 \text{ g Na}}{1 \text{ mole Na}} = 3.82 \text{ x } 10^{-17} \text{ g Na}$

15. How many iron atoms are in 10.0 grams of iron (Fe)?

10.0 g Fe	1 mole Fe	6.022×10^{23} Fe atoms	$= 1.08 \times 10^{23}$ Fe atoms
	55.85 g Fe	1 mole Fe	

16. How many copper (Cu) atoms are in a 257 gram copper pipe?

257 g Cu	1 mole Cu	$6.022 \text{ x } 10^{23} \text{ Cu}$ atoms	$= 2.44 \times 10^{24}$ Cu atoms
	63.55 g Cu	1 mole Cu	2.11 × 10 Cu atoms

CHAPTER 2 REVIEW WORKSHEET AND KEY

The Mole

1) How many zinc (Zn) atoms are contained in 5.16 moles of Zn?

- 2) How many moles of He are 221,000 He atoms?
- 3) How many atoms are contained in 0.98 moles of iron (Fe)?
- 4) How many moles of cesium are in 66.45 g Cs?
- 5) What is the mass (grams) of 2500. carbon atoms?
- 6) What is the mass (grams) of 6.52×10^{18} atoms of gold (Au)?

Name	Atomic number	Mass number	# of protons	# of neutrons	X-A form	AZX
Cobalt		60				
					I-131	
						$^{3}_{1}H$
	26	59				
						$^{99}_{42}Mo$
			11	24		
Strontium				52		
					U-235	
		134	55			
		19	9			
	79			118		
Copper				36		
			56	81		
					K-40	

Isotopes (IMPORTANT NOTE: X = Symbol, A=mass number, Z = atomic number)

KEY **The Mole** 1) How many zinc (Zn) atoms in 5.16 moles of Zn? 3.11 x 10²⁴ Zn atoms

2) How many moles of He are 221,000 He atoms?

3.67 x 10⁻¹⁹ moles He

3) How many atoms are contained in 0.98 moles of iron (Fe)?

 5.9×10^{23} Fe atoms

- 4) How many moles of cesium are in 66.45 g Cs?
- 0.5000 moles Cs
- 5) What is the mass (grams) of 2500. carbon atoms?

 $4.986 \text{ x} 10^{-20} \text{g C}$

6) What is the mass (grams) of 6.52×10^{18} atoms of gold (Au)?

0.00213	g Au
---------	------

Name	Atomic	Mass	# of	# of	X-A	$^{\text{A}}_{\text{Z}}X$
	number	number	protons	neutrons	form	Z ^A notation
Cobalt	27	60	27	33	Co-60	$^{60}_{27}Co$
Iodine	53	131	53	78	I-131	$^{131}_{53}I$
Hydrogen	1	3	1	2	H-3	${}^{3}_{1}H$
Iron	26	59	26	33	Fe-59	⁵⁹ ₂₆ Fe
Molybdenum	42	99	42	57	Mo-99	$^{99}_{42}Mo$
Sodium	11	35	11	24	Na-35	³⁵ ₁₁ Na
Strontium	38	90	38	52	Sr-90	$^{90}_{38}Sr$
Uranium	92	235	92	143	U-235	$^{235}_{92}U$
Cesium	55	134	55	79	Cs-134	$^{134}_{55}Cs$
Fluorine	9	19	9	10	F-19	$^{19}_{9}F$
Gold	79	197	79	118	Au-197	¹⁹⁷ ₇₉ Au
Copper	29	65	29	36	Cu-65	$^{65}_{29}Cu$
Barium	56	137	56	81	Ba-137	$^{137}_{56}Ba$
Potassium	19	40	19	21	K-40	$^{40}_{19}K$

Chapter 3 Lecture Notes: Compounds

Educational Goals

- 1. Understand where electrons are located in atoms and how the locations of electrons affect the energy of the atom.
- 2. Define the term valence electron and draw the electron dot structure of an atom or ion.
- 3. Define the term **ion** and explain how the electron dot structure of a s- or p-block element can be used to predict the charge of the monoatomic ion.
- 4. Given the symbol, be able to name monoatomic cations and anions (and vice versa).
- 5. Explain the difference between an **ionic bond** and a **covalent bond**.
- 6. Understand the structural difference between ionic and covalent compounds.
- 7. Given the name, be able to write the formulas of ionic compounds and binary covalent compounds (and vice versa).
- 8. Define the terms **molar mass**, **formula mass**, and **molecular mass** and use these values in unit conversions involving moles and mass.
- 9. Given the formula, draw the line bond structures of diatomic molecules.

The Arrangement of Electrons

Before we learn about compound, we must build on our understanding of atoms and electrons.

Specifically, in the beginning of chapter 3 you will learn:

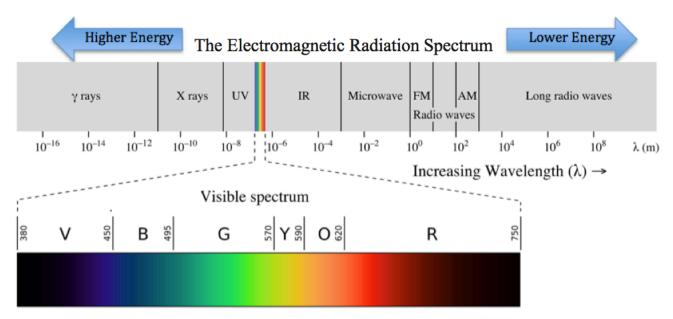
1) Where electrons are located in atoms.

2) How the location of electrons effect the energy of the atom.

Scientists used *light* to study how electrons are arranged around the nucleus.

Energy, in the form of light or heat, can be ______ by atoms.

Energy is **absorbed** by ______an electron to a *new* area.


Atoms release energy when electrons move *back* to ______ areas.

- This can happen when an atom collides with another particle.
- Another way this can happen is by an atom emitting ______.

The Modern Model of the Atom

New scientific laws and models of nature were needed to explain the pattern of light that was emitted by atoms.

Another word for *light* is *electromagnetic radiation*.

Visible light, the part of the electromagnetic spectrum that can be detected with the human eye, is a small part of the electromagnetic radiation spectrum (see the textbook for colored spectrum).

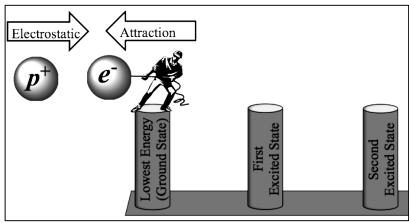
Short wavelengths correspond to higher energy; longer wavelengths correspond to lower energy light.

If **all energies** of light could be released from excited atoms, then we would expect the pattern of emitted light to look like this:

However, only light with **discrete** (distinct) energies is emitted. For example, the pattern of light emitted from excited hydrogen atoms is:

Our understanding of nature was dramatically changed when Max Planck and Albert Einstein introduced

They proposed that energy is absorbed and emitted by atoms *only* in ______ amounts called **quanta**.


• Another word for "*discrete*" is "*distinct*."

Recall that the light emitted from excited atoms is generated by electrons losing energy as they move from areas further from the nucleus (high energy) to areas nearer the nucleus (low energy). To lose the energy in this process, atoms emit light.

The observation that only discrete energies are emitted from excited atoms is explained using an atomic model that says that the *electrons can only exist in certain areas and therefore atoms have discrete energies*.

- We say that the energy of atoms is "_____."
- The first scientist to propose a model of the atom where electrons existed in specific regions that had discrete energies was Niels Bohr.

Illustration of the "Quantized" Energy of Hydrogen

When an atom's electron(s) are in the lowest possible energy area, we call this the ______.

• At room temperature, all atoms will exist in their ground state unless *temporarily* excited to a higher energy area by absorbing light.

Absorption of a discrete amount of energy corresponds to the worker **only** being able to move to *particular areas* (represented by posts in the illustration above).

When hydrogen's electron is in any other region than the ground state (lowest energy), we call that an ______ of hydrogen.

The excited atom will soon lose energy as the electron moves back to the ground state position. When the energy lost is in the form of light, that light will be the color (wavelength) corresponding to the energy difference between the initial "excited" region and the final, lower energy region.

The Modern Model of the Atom: The Quantum Mechanical Model

You can *avoid getting lost* in the detail (and wonder) of nature by focusing on the following two educational goals:

- 1) Understand where electrons are _____ in atoms.
- 2) Understand how the location of electrons affect the ______ of the atom.

The Hydrogen Atom

Hydrogen is unique because it has only ______ electron.

Electrons exist in certain **three-dimensional regions** called ______.

Orbitals can be described by these properties:

 1. The _______an electron in a particular orbital is from the nucleus.

- Since orbitals are three-dimensional and the electrons move (very quickly) within the orbitals, the distance an electron is from the nucleus is not constant (as it would be in a circular two-dimensional path). Therefore, we talk about the electron's *average distance* from the nucleus.
- As hydrogen's orbitals get larger, the average distance of an electron from the nucleus increases, therefore the ______ *the orbital* occupied by an electron, the ______ *the energy*. (As described in the illustration at the top of this page).

2. The three-dimensional ______ of the orbital.

- Not only do the sizes of orbitals vary, the shapes of orbitals vary as well.
- When the shapes of orbitals are shown as three-dimensional representations, the shapes represent the region that would contain the electron ______ of the time. The remaining 10% of the time, the electron would be outside of the shape that is shown in the graphic representation.

The Language of Quantum Mechanics

The orbitals are *centered on the* _____, and are labeled by a _____.

In a hydrogen atom:

- This number is related to the orbital **size** and the **energy** of an electron in the orbital.
- The orbitals are numbered from **lowest** energy (smallest size) to **higher** energy (larger size).

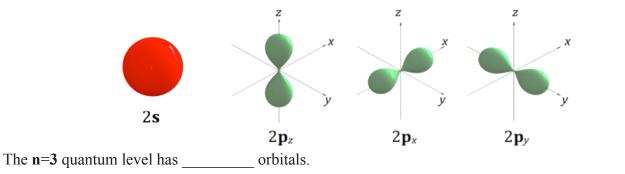
These numbers are referred to as "energy level," or "quantum number," or "quantum level," or "shell."

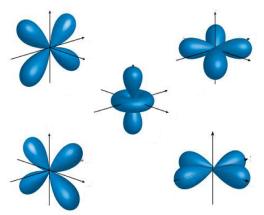
• We will use the term "____" or "_____" and abbreviate it by using "__."

In the lowest energy state of a hydrogen atom (the *ground state*), the electron occupies the n=1 quantum level.

The **n=1** quantum level has _____ orbital.

- It is called an _____ orbital.
- "s" represents the *shape* of the orbital, we use 1s because n=1).
- **s** orbitals are _____ in shape.


An Illustration of a 1s Orbital


• The ______ is in the **center** of the orbital.

The **n=2** quantum level has _____ orbitals.

- There is **one 2s** orbital
 - *All* s orbitals are spherically shaped.
 - We use **2s** because **n=2**.
 - The major difference between the **2s** orbital and the **1s** orbital is that the **2s** orbital is **larger**.
- There are **three 2p** orbitals.
 - **p** represents the shape; we use **2p** because **n=2**.
 - The **p** orbitals all have the **same shape** and only differ in *how they are* ______ around the nucleus.

- There is **one 3s** orbital, **three 3p** orbitals, and **five 3d** orbitals.
- The shapes of the **3s** and **3p** orbitals are similar to those of the **2s** and **2p** orbitals, respectively, but they are *larger*.
- The **five 3d** orbital are illustrated below:

As is the case for all orbitals, the **d** orbitals are centered on the nucleus.

Image Source: Wikimedia Commons, CK-12 Foundation, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

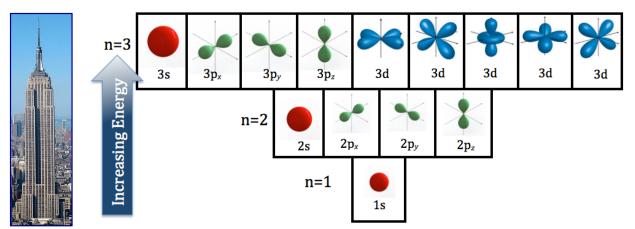
The **n=4** quantum level has ______orbitals.

- There is **one 4s** orbital, **three 4p** orbitals, **five 4d** orbitals, and **seven 4f** orbitals.
- The **f** orbitals have shapes that are even more complicated then the **d** orbitals.
- The shapes of the **4s**, **4p**, and **4d** orbitals are similar to those of the **3s**, **3p**, and **3d** orbitals, respectively, but they are *larger*.

The **n=5** level has **twenty-five** orbitals.

This just keeps going, n = 6, 7, 8, etc.

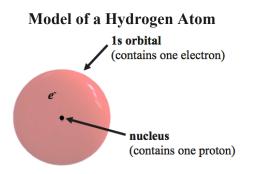
Although quantum levels with n > 4 contain orbitals other than s, p, d, and f, these other orbitals are never occupied by electrons of any element in its ground state.


• The only time an electron can occupy any of those orbitals will be if the atom absorbs energy.

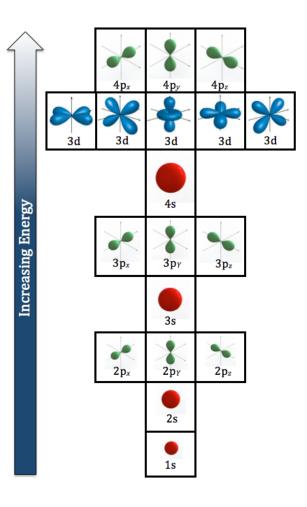
Energy Level Diagram for Hydrogen

We can organize the various atomic orbitals according to their energy in an illustration called an **energy level diagram**. The energy level diagram for the first five quantum levels (n = 1-5) of a hydrogen atom is shown below.

$$n=5 \quad \overline{5s} \quad \overline{5p_x} \quad \overline{5p_y} \quad \overline{5p_z} \quad \overline{5d} \quad \overline{5f} \quad$$


Let's compare the *energy level diagram* to a *skyscraper*, we will call this our **skyscraper model**.

Skyscraper photo source: Wikimedia Commons, Author: Avala, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode


The different ______ of the skyscraper represent the quantum levels (**n**).

- The first floor is the lowest energy floor so it would correlate with n=1, the ground state.
 - _____ on a particular floor are analogous to the various orbitals in a particular *quantum level*.

Atomic Model for Multi-Electron Atoms

		Energy Leve	el Diagram for Multi-Electron Atoms
1	75		6d 6d 6d 6d 6d 5f 5f 5f 5f 5f 5f 5f
.gy		$\overline{6p_x} \overline{6p_y} \overline{6p_z}$	5d 5d 5d 5d 4f 4f 4f 4f 4f
Increasing Energy	6s 5s 4s 3s 2s	$ \overline{5p_x} \ \overline{5p_y} \ \overline{5p_z} $ $ \overline{4p_x} \ \overline{4p_y} \ \overline{4p_z} $ $ \overline{3p_x} \ \overline{3p_y} \ \overline{3p_z} $ $ \overline{2p_x} \ \overline{2p_y} \ \overline{2p_z} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1s		

Skyscraper Model for Multi-Electron Atoms

We live in a universe where matter tends to exist in the lowest possible energy state.

An informal way to state this is:

Nature wants everything to be at the _____ possible energy.

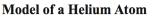
Electrons are arranged (configured) into the orbitals of multi-electron atoms in the way that results in the **lowest** possible energy.

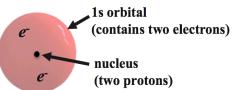
Nature does this by obeying the following principles:

1) The Aufbau Principle

"Aufbau" (German) means *build-up* or *construct*. The *aufbau principle* states that an electron occupies the *lowest energy orbital that can receive it*.

2) The Pauli Exclusion Principle

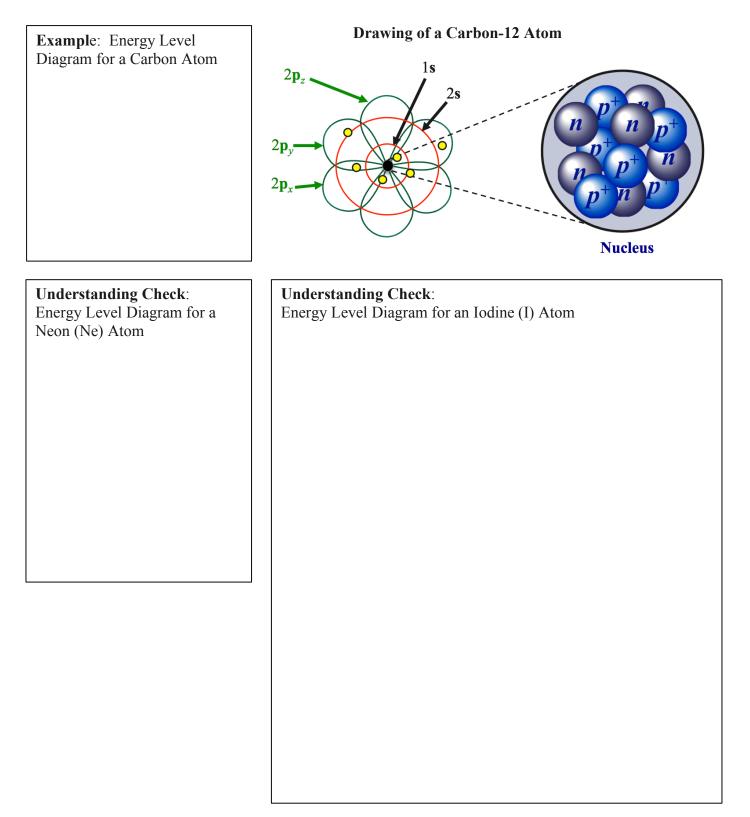

An orbital can hold a maximum of ______electrons.


Electrons have a quantum mechanical property called **spin**.

We call the spin states "**up**" or "**down**."

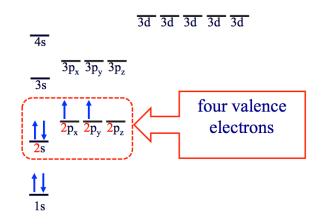
• When two electrons occupy the same orbital, one electron has spin "up" the other has spin "down."

This is all that you need to know about spin to understand all of the concepts covered in this textbook. You may find it interesting that spin is responsible for magnetic properties of matter. In fact, spin is the reason that electrons behave as tiny magnets! **Exampl**e: Energy Level Diagram for a Helium Atom



3) Hund's Rules

When electrons are configured into orbitals that all have the *same energy*, a *single electron* is placed into **each** of the equal-energy orbitals before a second electron is added to an occupied orbital.


When electrons are configured into a *set of orbitals* that all have the same energy, the spins of the first electrons to be placed into each orbital are all in the same state (for example all "up").

Valence Electrons

These are the electrons that elements lose to become ______

Example: How many valence electrons do **carbon** (C) atoms have?

Understanding Check: How many valence electrons do **oxygen** (O) atoms have?

Short-Cut for Determining the Number of Valence Electrons

Elements are arranged in the periodic table according to the number of valence electrons.

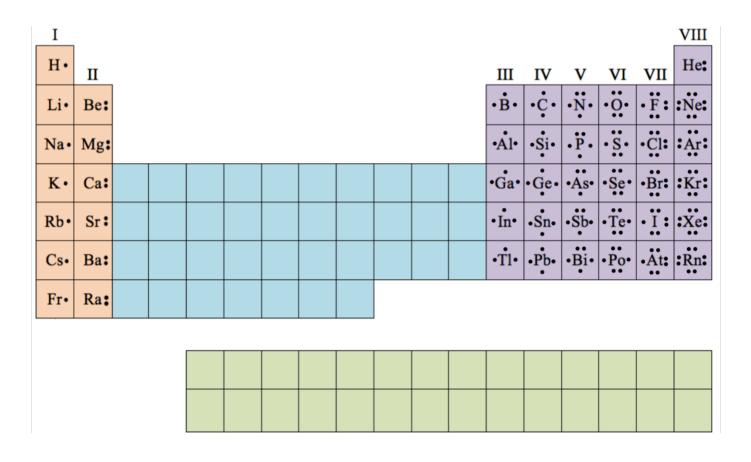
For **s**- and **p**-block elements, all elements in the same periodic ______ (group) have the *same number of valence electrons* as all others in that column.

The group numbers for the columns *represent* the number of valence electrons contained in those atoms.

Ι																	VIII
1																	2
Н	II											III	IV	V	VI	VII	He
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12				Tra	nsitio	n Me	tals				13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
				_							(Inn	er) Tr	ansiți	on M	etals		
			1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	L	antha	nides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
		Acti	nides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
,				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Different elements with the same number of valence electrons are said to be

Example of isoelectric elements: oxygen and sulfur

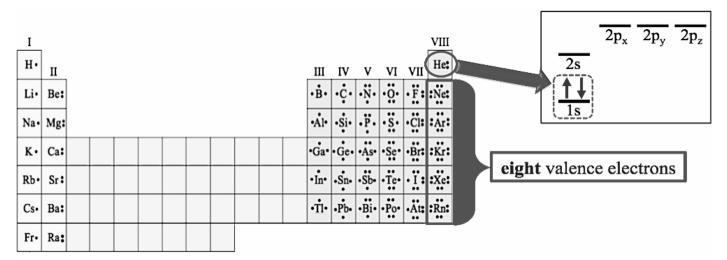

Isoelectric atoms often behave in similar ways. For example, oxygen atoms often chemically "bond" to two hydrogen atoms to form water (H₂O); sulfur atoms, also often "bond" with two hydrogen atoms to form hydrogen sulfide (H₂S). **Understanding Check**: Use the periodic table to determine the number of valence electrons in each of these types of atoms:

- a. hydrogen (H)
- b. nitrogen (N)
- c. bromine (Br)
- d. krypton (Kr)

Electron Dot Structures

Electron dot structures show the number of *valence electrons* that an atom carries.

• In these structures, *valence electrons are represented by* _____ drawn next to an element's symbol.



Noble Gases and the Octet Rule

The group VIII elements (He, Ne, Ar, Kr, Xe, and Rn) are called _____ gases.

He, Ne, Ar, Kr, Xe, and Rn belong to the **noble gas family**, which gets it's name from the fact that these elements are resistant to change and, with few exceptions, do not lose or gain electrons.

The resistance to change (stability) of the noble gases is related to having their outermost quantum level (*shell*) completely ______ with electrons

Helium's outermost shell (the n=1 quantum level) is completely filled with its *two* electrons.

All of the other noble gas elements have completely filled outermost shells with ______ electrons.

This stability of the noble gas elements that have *eight electrons* in their outermost shell led to what chemists call the ______.

Most substances around us do not exist as individual atoms. Atoms will "bond" with other atoms to form compounds such as water (H_2O), carbon dioxide (CO_2), and table salt (sodium chloride). In the remainder of chapter 3, we will discuss the nature of this "bonding" of atoms to other atoms.

The Octet Rule is quite useful in predicting and understanding bonding patterns in chemical compounds.

The Octet Rule

Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an *octet* (eight) of electrons in its outermost shell.

There are exceptions to the octet rule. An important exception that we will always use is for *hydrogen* and *helium*.

• Hydrogen and helium have filled outer shells (are stable) with just *two* electrons because their outermost level (**n**=1) has only one orbital.

Ions

Atoms have the same number of electrons as protons and are therefore *electrically neutral*.

An ______ is a small particle that has an *electrical charge*.

Atoms can *gain or lose* ______ to become ions.

Metal atoms can ______ electrons to form *positive ions*.

If an atom *loses* one or more electrons, it will then have more protons than electrons and have an overall *positive charge*.

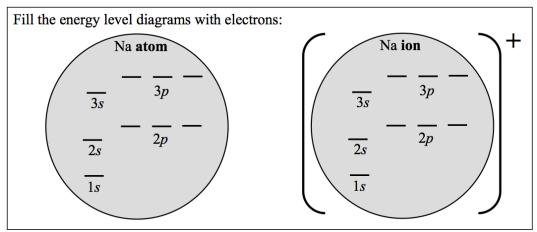
• *Positive ions* are called _____.

Nonmetal atoms can ______ electrons to form *negative ions*.

If an atom *gains* one or more electrons, it will then have more electrons than protons and have an overall *negative charge*.

• *Negative ions* are called _____.

The Octet Rule in the Formation of Ions


The Octet Rule can be used to predict the formation of ions.

Very often, ions are formed such that the *ion* has an _____ in its outermost shell.

This tendency will allow us to predict the ______ of the ion that is formed for particular elements.

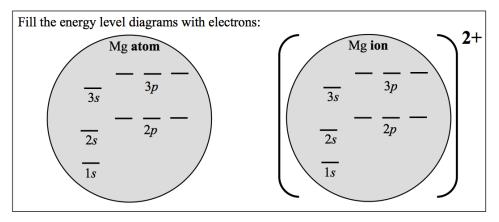
Example: Let's do a Cation - Sodium (Na)

- A sodium atom has _____ protons and _____ electrons.
- How many valence electrons does the sodium atom have? ______
- How many valence electrons does sodium want? ______

When sodium loses an electron, it has an octet of electrons in its outer shell.

Sodium will lose_____ electron to become a sodium ion (Na⁺).

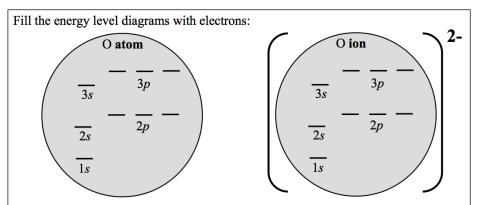
- Sodium has one valence electron
- There are two ways to have a filled octet:
 - 1) Add 7 electrons
 - 2) Remove one electron
- It is easier to remove one electron!


electron dot structure for a **Sodium Atom**

electron dot structure for a **Sodium Ion**

Example: Let's do Another Cation - Magnesium (Mg)

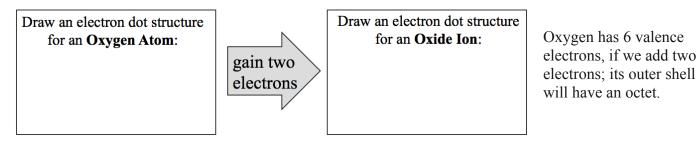
- A magnesium atom has _____ protons and _____ electrons.
- How many valence electrons does the magnesium atom have? ______
- How many valence electrons does magnesium "want?"


When magnesium loses two electrons, it has an octet of electrons in its outer shell.

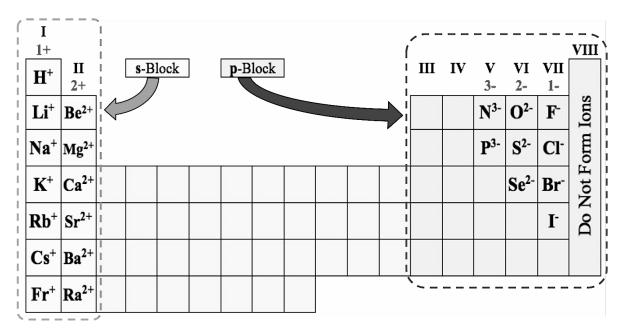
Magnesium will lose _____ electrons to become a magnesium ion (Mg^{2+}) .

Understanding Check: Based on the octet rule, what would be the charge of an aluminum ion? **HINT:** Begin with the energy level diagram (or the number of valence electrons) for an aluminum atom.

Example: Let's do an Anion - Oxygen (O)


- An oxygen atom has _____ protons and _____ electrons.
- How many valence electrons does the oxygen atom have? ______
- How many valence electrons does oxygen want? ____

When oxygen gains two electrons, it has an octet of electrons in its outer shell.


Oxygen will gain _____ electrons to become an oxide ion $(0^{2^{-}})$.

The *electron dot structure* can give us the same conclusion!

Understanding Check: What would be the charge of an **ion** formed from a **chlorine** atom? **HINT:** Begin with the electron dot structure for a chlorine atom.

We can determine the charge of an ion formed from *s-block elements* and *p-block nonmetals* from the number of valence electrons in those elements, and therefore by their *location* on the periodic table.

Periodic Group	Number of Valence Electrons of the Element	Number of Electrons Gained or Lost in Ion Formation	Charge of Ion Formed		
	s-Blo	ock Elements			
Group I	1	Lose 1 electron	1+		
Group II	2	Lose 2 electrons	2+		
	p-Block N	onmetal Elements			
Group III	There are no 0	Group III nonmetals (only metals and metalloids)			
Group IV	4	Do not form ions, high energy to gain or lose 4	electrons!		
Group V	5	Gain 3 electrons			
Group VI	6	Gain 2 electrons	2-		
Group VII	7	Gain 1 electron	1-		
Group VIII	8	Do not form ions, noble gas atoms have filled outer shells.			

The charge of the ions formed from the **transition metals** and **p-block metals** <u>*cannot*</u> always be predicted by their position in the periodic table.

I 1+														VIII
H ⁺	II 2+								ш	IV	V 3-	VI 2-	VII 1-	
Li^+	Be ²⁺										N ³⁻	O ²⁻	F	Ions
\mathbf{Na}^+	Mg ²⁺	 	 tra	nsiti	on n	neta	ls				P ³⁻	S ²⁻	Cl	Do Not Form Ions
K ⁺	Ca ²⁺											Se ²⁻	Br ⁻	Not F
\mathbf{Rb}^+	Sr ²⁺												I.	Dol
\mathbf{Cs}^+	Ba ²⁺													
\mathbf{Fr}^+	Ra ²⁺		 					 						

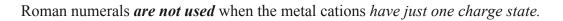
Many of these elements can form *more than one* type (charge) of ion.

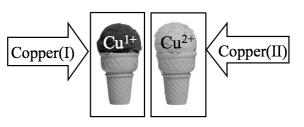
Example: Iron (Fe):

Iron (Fe) ions can come as Fe^{2+} or Fe^{3+}

Example: Copper (Cu):

Copper (Cu) ions can come as Cu¹⁺or Cu²⁺


To differentiate the various charge states of ions when reading or writing their names, we use _____


numerals corresponding to the **charge** after the element name.

• When saying the ion's name, one would say "copper one" for Cu¹⁺ and "copper two" for Cu²⁺. We *only* use the Roman numeral for ions that can *exist in more than one charge state*.

Some of the transition metals and p-block metals only exist in one charge state.

• For example, **cadmium ions** only exist as **Cd**²⁺.

Since the charges of many of the transition metal and p-block metal ions *cannot* be easily predicted from their positions on the periodic table, and many can have more than one charge, we must refer to tabulated list for the charges.

The table below lists the charges for some transition metals and p-block ions. You do not need to memorize the metal names and charges in this table; I will give you this table for with your exams.

lons that occur with only <u>one</u> charge							
Name	Name Charge Name Char						
aluminum ion	Al ³⁺	cadmium ion	Cd ²⁺				
silver ion	Ag+	zinc ion	Zn ²⁺				
lons that occur with <u>multiple</u> charges							
Name	Charge	Name	Charge				
copper(I) ion	Cu+	tin(II) ion	Sn ²⁺				
copper(II) ion	Cu ²⁺	tin(IV) ion	Sn ⁴⁺				
iron(II) ion	Fe ²⁺	lead(II) ion	Pb ²⁺				
iron(III) ion	Fe ³⁺	lead(IV) ion	Pb ⁴⁺				
cobalt(II) ion	Co ²⁺	mercury(I) ion	Hg+				
cobalt(III) ion	Co ³⁺	mercury(II) ion	Hg ²⁺				

Charges for Some Transition Metal and p-Block Metal lons

This table does not contain data for the all ions formed by *all* of the transition and **p**-block metal cations, however it includes the ions that you will need in order to solve and understand any of the examples and problems in this course.

Naming Monatomic Ions

A *monatomic ion* is an ion that is made when a _____ **atom** gains or loses electron(s).

Naming Monatomic *Cations*

Cations use the name of the element, followed by the word "ion."

• Examples:

 Na^+ is referred to as a sodium ion.

 Mg^{2+} is referred to as a magnesium ion.

For monatomic cations that can occur *with multiple charges*, indicate the charge using Roman numerals *after* the element's name.

• Examples:

 Fe^{2+} is referred to as an iron(II) ion

 Fe^{3+} is referred to as an iron(III) ion

Naming Monatomic Anions

Anions are named by changing the *suffix* (ending) of the name to "-____."

• Examples:

 \mathbf{F}^{-} is referred to as a fluor**ide** ion.

 O^{2-} is referred to as an oxide ion.

Polyatomic Ions

Several atoms often "stick" (bond) together to form a small particle.

If the resulting particle has the same number of protons as electrons, then it will be **electrically neutral**, and we call the particle a ______.

If, on the other hand, there is an *excess of protons or an excess of electrons* in the particle, then it will have an *overall electrical charge*, and we call the particle a ______ ion.

Example of a Polyatomic Ion: Nitrate Ion

The table below lists the names and charges for some polyatomic ions. You do not need to memorize this table; I will give you this table for with your exams.

POLYATOMIC CATIONS							
H ₃ O ⁺ hydronium ion	NH4 ⁺ ammonium ion						
POLYATOMIC	ANIONS						
OH ⁻ hydroxide ion	HSO4 ⁻ hydrogen sulfate (or bisulfate) ion						
CO ₃ ²⁻ carbonate ion	PO43- phosphate ion						
HCO3 ⁻ bicarbonate (also called hydrogen carbonate) ion	HPO42- hydrogen phosphate ion						
NO ₂ - nitrite ion	H ₂ PO ₄ - dihydrogen phosphate ion						
NO ₃ - nitrate ion	CrO ₄ ²⁻ chromate ion						
SO ₃ ²⁻ sulfite ion	Cr ₂ O ₇ ²⁻ dichromate ion						
SO4 ²⁻ sulfate ion	$C_2H_3O_2{}^-$ acetate ion (sometimes written as $CH_3CO_2{}^-$)						
	CN ⁻ cyanide ion						

Some Polyatomic Ion Names and Charges

Chemical Compounds

Compounds: _____

Each compound has the same ______ of the same elements.

• Example: Water = 2 hydrogen atoms and 1 oxygen atom (Ratio H:O = 2:1)

Chemical bonds

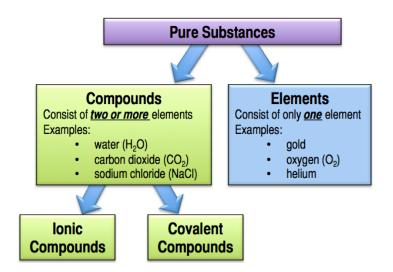
Atoms can *bond* with other atoms, and ions can *bond* with other ions to form *compounds* such as water (H_2O) , carbon dioxide (CO_2) , and table salt (sodium chloride).

Chemical bonds are the *electrical attractive* ______ that hold atoms or ions together in a compound.

There are *three types* of **chemical bonding**:

- 1) Covalent Bonding
- 2) Ionic Bonding
- 3) Metallic Bonding

In this chapter, you will learn about the first two types, *covalent bonding* and *ionic bonding*. You will learn about *metallic bonding* in chapter 5.


Some Terminology

All matter can be classified as either *mixtures* or *pure substances*. You will learn about mixtures in chapter 6. *Pure substances* are described in the chart *on the right*:

Chemistry is the study of matter and the *changes* it undergoes.

changes, such as *melting* or *boiling*, result in changes in *physical properties* and *do not* involve the formation of new *pure substances*.

• For example, the melting of ice is simply H₂O being changed from the *solid* phase to the *liquid* phase. The chemical bonds between oxygen and hydrogen atoms do not change in that process.

changes, on the other hand, result in the formation of new pure substances.

- To make a **new** pure substance, *chemical bonds must be* ______ *and/or new chemical bonds are* _____.
- This happens in a process called a **chemical reaction**, which we will study in chapter 6.

A *major principle* of chemistry is that the observed (macroscopic) properties of a substance are related to its "microscopic" structure.

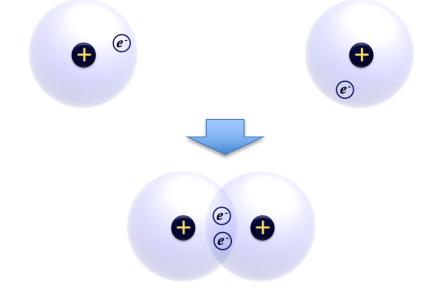
• The *microscopic* structure entails details such as the kind of atoms/ions and the pattern in which they are *bonded* to each other.

Covalent Chemical Bonding

Covalent bonding is defined as the chemical bonding *force* that results from the

____ between two atoms.

The resulting collection of atoms results in the formation of either ______ or *polyatomic ions*.


A molecule is an electrically group of atoms *held together by covalent bonds*.

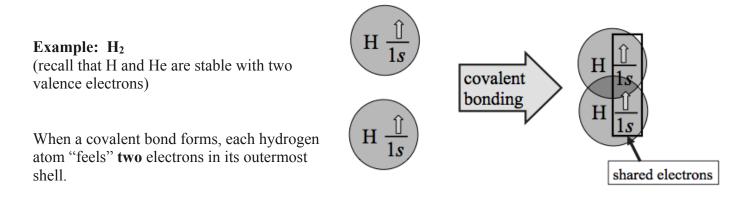
Covalent bonding occurs between ______atoms.

Covalent bonding occurs because the bound atoms are at a ______ energy than the unbound atoms.

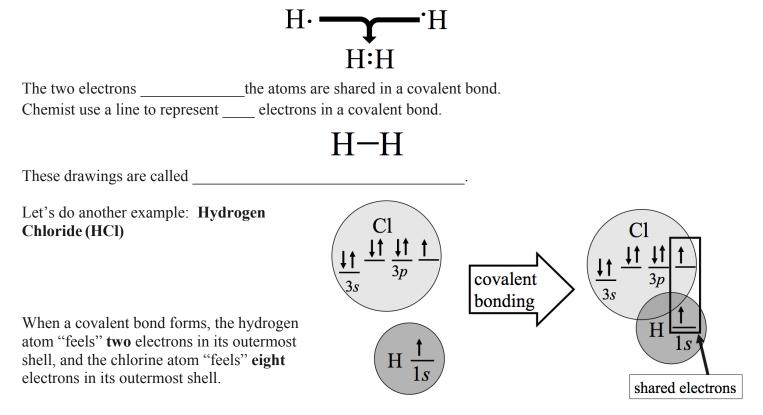
Why does sharing of electron pairs result in an attractive electrostatic force capable of holding atoms together?

Consider the two hydrogen atoms coming together to form a covalent bond.

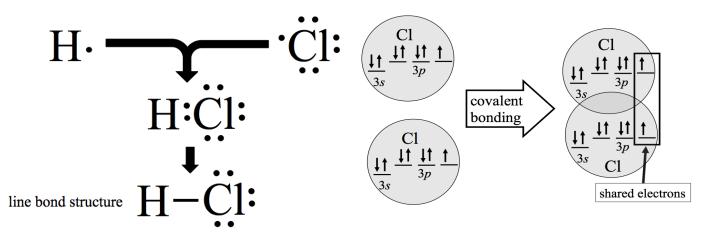
In covalent bonding, the atoms ______ electron pairs.


The shared electron pair spends significantly *more* _____ in the area between the positive nuclei of the hydrogen atoms than in other regions.

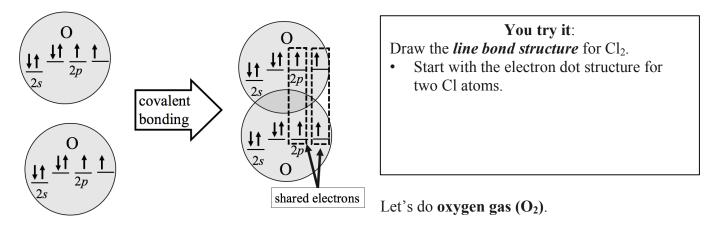
The electron pair between the nuclei create a **positive-negative-positive** electrostatic attractive "sandwich" and this ______ holds the atoms together.


The Octet Rule in the Formation of Molecules

The positive-negative-positive model **cannot** explain why a covalent bond *does not* form between two *helium* atoms.


The octet rule in the formation of molecules is: *molecules tend to form such that the atoms are surrounded by an octet (eight) of valence electrons (except for hydrogen and helium that have two electrons)*.

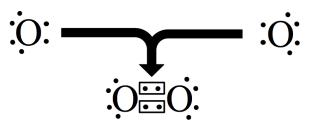
The H₂ covalent bond can also be illustrated with electron dot structures.



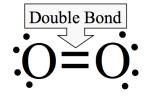
The HCl covalent bond can also be illustrated using electron dot structures.

Let's do another example: Cl₂ (chlorine gas).

When a covalent bond forms, each chlorine atom "feels" eight electrons in its outermost shell.

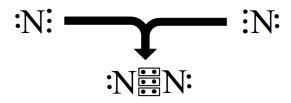


In O₂, *two pairs* of electrons are shared.

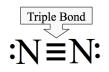

When a covalent bond forms, each oxygen atom "feels" eight electrons in its outermost shell.

Let's draw the line bond structure for oxygen gas (O₂).

- Oxygen atoms have 6 valence electrons.
- We will rotate the electrons so they can form bonding pairs.



When atoms are bonded with 2 pairs of electrons it is called a ______.

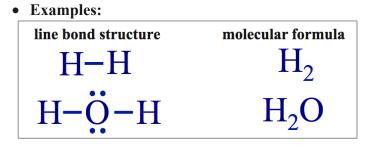

Let's draw the line bond structure for nitrogen gas (N_2)

- Nitrogen atoms have 5 valence electrons.
- We will rotate the electrons so they can form bonding pairs.

We use lines to represent electron pairs.

When atoms are bonded with **3 pairs** of electrons it is called a ______

Naming Covalent Compounds


The covalent bonding that we will see in this course will *always* involve ______ *elements* only.

The nonmetal atoms can share electrons to form molecules (molecular compounds) or polyatomic ions.

A chemical substance whose simplest units are **molecules** is called a ______ *compound*.

When discussing molecules we use a ______ that shows the *types* (elements) and numbers of atoms that make up a single molecule.

The number of atoms of each element contained in the molecule is written as a *subscript* after the element's symbol.

When there is only **one atom** of a particular element present in a molecule the subscripted "1" is *omitted* for that element.

Some molecules *only* contain *one* element, for example H₂, Cl₂, and O₂.

- These molecules often take the name of the elements they contain.
- Examples:

molecular formula	name
H ₂	hydrogen
O ₂	oxygen

24

Naming Binary Covalent (Molecular) Compounds

covalent compounds contain only *two* (the "bi-" prefix indicates "*two*").

• Examples of binary covalent compounds are HCl, H₂O, and CO₂.

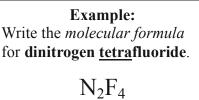
Educational Goals:

Given the name of a *binary covalent molecule*, be able to write the molecular formula. Given the molecular formula of a *binary covalent molecule*, be able to write the name of the molecule.

Method for Naming Binary Covalent (Molecular) Compounds

- 1. List the name of the first element in the formula.
- 2. List the second element and add the –ide .
- 3. Use Greek to indicate the number of each atom in the formula.
 - **Exception:** If there is just one atom of the element in • the formula, do not use **mono-** for the *first element in the name*.
 - Example: CO₂ monocarbon dioxide \rightarrow carbon dioxide
 - The "o" or "a" at the *end of the Greek prefix* is omitted when the element's name begins with a vowel.
 - Example: CO carbon mon Θ xide \rightarrow carbon mon Θ xide

Example Problem:


Name the following compound: CCl₄

Answer: carbon tetrachloride

Understanding Check					
Write the names of the following molecules:					
CF ₄					
N ₂ O					
SF ₆					

Method for Writing the *Molecular Formula* of a Binary Covalent Compound

- 1. Write the symbol of the *first element* in the compound's name, then the symbol of the *second* element in the compound's name.
- 2. Indicate *how many atoms* of each element the molecule contains using *subscripts* after the atomic symbol.
 - The *numbers of atoms* are given in the Greek prefixes in the molecule's name.
 - NOTE: If there is no Greek prefix in front of the first element in the name, that means the number is 1.

Greek Prefix Number mono 1 di 2 tri 3 4 tetra 5 penta 6 hexa 7 hepta 8 octa 9 nona deca 10

Understanding Check

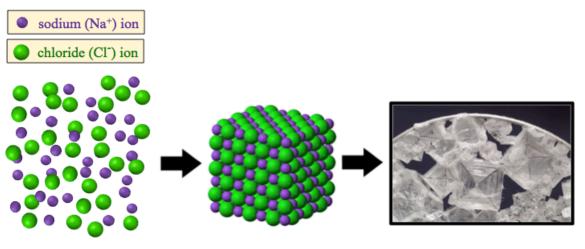
Write the **molecular formula** for the covalent compounds:

- nitrogen trichloride •
- dinitrogen pentoxide
- sulfur dioxide •

For covalent compounds with more than two types of atoms, we use common names or IUPAC system names. You are not responsible for knowing common names. You will learn some IUPAC system names in later chapters.

Examples of *common names*:

- Glucose $(C_6H_{12}O_6)$
- Acetone (C_3H_6O)


Ionic Compounds

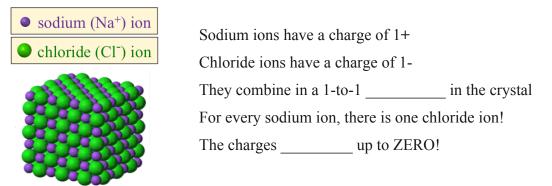
Definition of ionic bonding: Chemical bonding that results from the electrostatic attraction between numbers of cations and anions.

• Compounds composed of ions are called **ionic compounds**.

Example of an ionic compound: sodium chloride (NaCl)

Many sodium ions combine with many chloride ions in a *three-dimensional pattern* that minimizes the distance between the oppositely charged cations and anions and maximizes the distance between the likecharged particles.

We call this structure a or *crystal* .


It is this regular, repeating structure on the scale of the individual ions that give crystals the interesting geometrical shapes that we see on the macro-scale when we look at them with our eyes or with a microscope.

Ionic bonding (ionic compounds) results from:

- Combining metal ions with nonmetal ions.
- Combining polyatomic ions with other ions.

The cations and anions will combine in a ratio such that the *total* of the *positive* (+) and *negative* (-) *charges* equals _____!

• **Example:** Sodium Chloride (NaCl)

Formula Units

The use of *molecular formulas* would not make sense for ionic compounds; they do not form molecules, instead they form crystals.

We write ______ (as opposed to *molecular formulas*) for ionic compounds.

The *formula unit* looks like the molecular formula used for covalent compounds, however it means something *entirely* different.

The *formula unit* uses *subscripted numbers* after the ion's symbol that indicate the *ratio* that the cations and anions combine in the ionic crystal.

- As in the case of molecular formula, when a subscript would have a value of "1," the subscript is omitted.
- We write the cation symbol first followed by a numerical subscript (if needed), then we write the anion symbol followed by a numerical subscript (if needed).

Example: For sodium chloride, since sodium ions and chloride ions combine in a **one-to-one ratio**, we write the formula unit of sodium chloride as:

NaCl

Example: *Calcium* ions combine with *fluoride* ions to form an **ionic compound**.

Calcium ions have a charge of 2+

Fluoride ions have a charge of 1-

They combine in a _____ ratio in the crystal

For *every* calcium ion, there are ______fluoride ions.

We write the *formula unit* for calcium fluoride as:

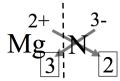
 CaF_2

Understanding Check:

Write the *formula unit* for the compound formed by combining magnesium and chloride ions.

Understanding Check:

Write the *formula unit* for the compound formed by combining potassium and oxide ions.



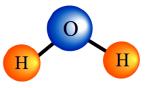
Understanding Check:

Write the *formula unit* for the compound formed by combining magnesium and nitride ions.

Dr. Zoval's Caveman Style, Works Every Time Method:

The Criss-Cross Method

Formula Units Write the formula for the ionic compound formed between each of the following pairs of ions: Cu^+ and O^{2-} Fe^{3+} and S^{2-} Cu^{2+} and $Cl^ Mg^{2+}$ and O^{2-}



Formula Unit vs. Molecular Formula

Formula Unit = Lowest RATIO of ions
Example: NaCl Ratio of Na ⁺ to Cl ⁻ = 1 to 1
• sodium (Na ⁺) ion
Chloride (Cl ⁻) ion

Molecular Formula = Actual **number** of atoms

Example: H₂O *two* hydrogen atoms and *one* oxygen atom

Naming Ionic Compounds

Educational Goals:

Given the **name** of an *ionic compound*, be able to write the **formula unit**. Given the **formula unit** of an *ionic compound*, be able to write the **name**.

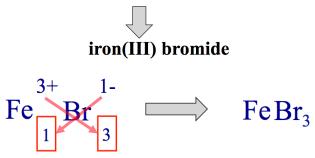
Method for Writing Formula Units for Ionic Compounds

1) Write the symbol of the first ion (the cation) in the compound's name, then the symbol of the second ion (the anion) in the compound's name.

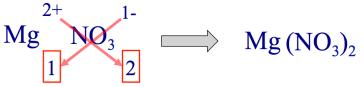
2) Indicate the **ratio** of the ions in the compound using *subscripts* after each ion.

The ratio of the ions is deduced by *balancing the charges* of the ions so that the total charge in the crystal is equal to **zero**.

- We find the ion's charge from its position on the periodic table or, for polyatomic ions, we look it up in a table.
- You will know the charge for the metals that occur with various charges because the charge will be written in the compound's name in Roman numerals.


ions:

For


When the *subscript* for a **polyatomic ion** is *greater than 1*, the polyatomic ion formula is written in parenthesis and the subscript is written after/outside of the parenthesis.

Example: Write the *formula unit* for iron(III) bromide.

• You will know the **charge** for the metals t*hat occur with various charges* because the charge will be written in the compound's name in **Roman numerals**.

Example: Write the *formula unit* for magnesium nitrate.

• For polyatomic ions:

When the *subscript* for a **polyatomic ion** is *greater than 1*, the polyatomic ion formula is written in parenthesis and the subscript is written after/outside of the parenthesis.

Understanding Check: Write the *formula unit* for each of the following compounds:

- a. sodium bicarbonate
- b. sodium fluoride
- c. iron(III) chloride
- d. sodium carbonate
- e. copper(II) sulfate
- f. magnesium hydroxide

Method for Writing the Names of Ionic Compounds

- 1. Write the _____ name first, then the _____ name.
 - Monoatomic *anions* (anions composed of one element) use the "ide" suffix.
 - We get the names of *polyatomic ions* from the polyatomic ion table.
- 2. If the cation is one of the *metals with various charges*, write the charge using parenthesis and Roman numerals after the metal's name.

Example: Name the following compound: MgCl₂

Name: magnesium chloride

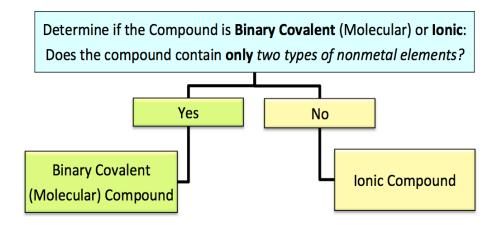
Example: Name the following compound: CuBr₂

• What *must* the charge of the copper ion be? **2**+

Name: copper(II) bromide

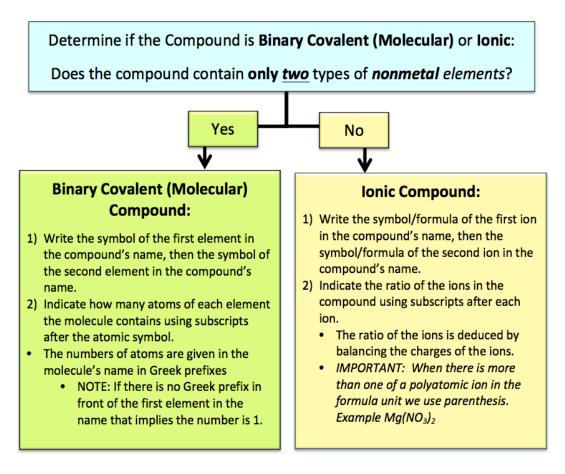
Complete the names of the following ionic compounds with variable charge metal ions:

 $FeBr_2 \qquad iron(_) bromide$


CuCl copper(__) chloride

SnO₂ (__)

Fe₂O₃


Name the following ionic compounds: NaCl ______ ZnI₂ _____ Al₂O₃ _____

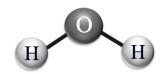
Naming Compound Summary

Given the Molecular Formula, Write the Name

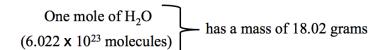
Molar Mass of Compounds

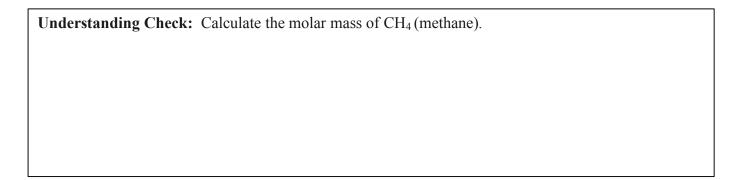
In this video, you will learn how to calculate the **molar mass** of a compound and how to use the molar mass of a compound to do *mole-mass conversions*.

- 1) Molar Mass of Covalent Compounds (Molecules)
- 2) Molar Mass of Ionic Compounds

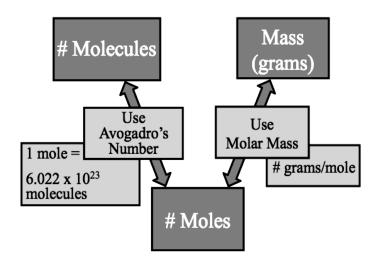

Molar Mass of Covalent Compounds (Molecules)

The **molar mass** of a ______ tells us the mass (grams) of **1 mole** of the *molecules*.


• The *molar mass* of a molecule is also called the **molecular mass**.

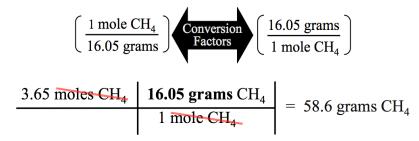

To calculate the *molar mass* of a **molecule** we **add up** the *atomic molar masses* of **all** _____ in the molecule.

Example: Let's calculate the molar mass of H_2O .


Atom	# of Atoms	Atomic Molar Mass		Total
oxygen	1	х	16.00 g/mole	16.00 g/mole
hydrogen	2	х	1.01 g/mole	2.02 g/mole
	Molar Mass of H ₂ O =			18.02 g/mole

Mass-Mole-Molecules Conversions

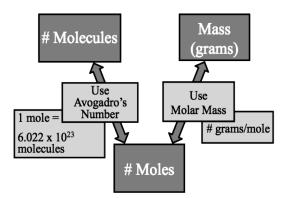
Note that, as in the case of atoms, the molar mass of a compound is the *relationship* between *moles* and *mass (grams)*, therefore we can **convert** between moles and grams of compounds.



Example: How many grams of CH₄ is contained in 3.65 moles?

Use the molar mass to write an *equivalence statement*:

• 1 mole CH₄ = 16.05 grams


The equivalence statements can be written as conversion factors:

You have just learned how to convert between moles and mass of a compound and vice versa.

We do a **two-step calculation** to convert between **mass** and number of **molecules**.

We can *convert between molecules and moles* since **Avogadro's Number applies to molecules**; one mole of a molecular compound contains 6.022×10^{23} molecules.

You try one: How many H₂O *molecules* are contained in 237 grams?

Molar Mass of Ionic Compounds

When using the **molar mass** of *ionic compounds*, we calculate the mass of a compound based on the number of each ion as it appears in the formula unit.

• For this reason, the *molar mass of an ionic compound* is also called _____ mass.

Example: The molar mass of sodium chloride (NaCl)

The **formula unit** for *sodium chloride* is **NaCl** because there is a 1:1 ratio of sodium ions to chloride ions in the crystal.

One mole of sodium chloride contains one mole of sodium ions and one mole of chloride ions.

Although **ions** have *extra* or *missing* elections, their molar masses are calculated by adding the *atomic molar masses* of the elements they contain.

• The reason we can do this is because the mass of electrons is negligible compared to the mass of protons and neutrons.

lon	# of ions in the Formula Unit	Molar Mass of ion		Total
Sodium	1	x	22.99 g/mole	= 22.99 g/mole
Chloride	1	x	35.45 g/mole	= 35.45 g/mole
Molar Mass (Formula Mass) of NaCl			= 58.44 g/mole	

Example: What is the molar mass of iron(II) phosphate, $Fe_3(PO_4)_2$?

One mole of iron(II) phosphate contains *three* moles of *iron(II) ions* and *two* moles of *phosphate ions*.

three moles of iron(II) ions

iron(II) ion is: 55.85 g/mole.

 Fe_3 The molar mass of **each** $(PO_4)_2$

each phosphate ion contains:

- one mole of phosphorus
- four moles of oxygen

The molar mass of **each** *phosphate ion* is: **94.97** g/mole.

two moles of *phosphate ions*

The molar mass (or formula mass) is calculated by adding the molar masses of the ions:

lon	# of lons in the Formula Unit	I	Molar Mass of ion	Total
Iron(II)	3	х	55.85 g/mole	= 167.55 g/mole
Phosphate	2		94.97 g/mole based on: one phosphorus and four oxygens per ion	= 189.94 g/mole
Molar Mass (Formula Mass) of $Fe_3(PO_4)_2$			= 357.49 g/mole	

An Alternative Method:

Fe₃

 $(PO_4)_2$

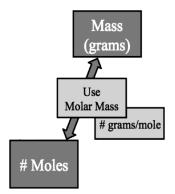
three moles of iron(II) ions

two moles of *phosphate ions* contain:

- *two* moles of phosphorous
- *eight* (2 x 4) moles of oxygen

```
Three moles of Fe: 3 \times 55.85 \text{ g/mole} =

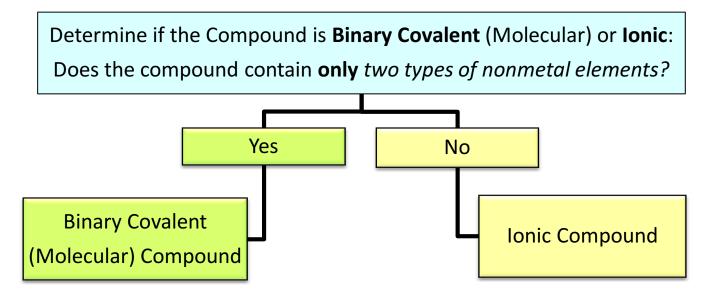
Two moles of P: 2 \times 30.97 \text{ g/mole} =


Eight moles of O: 8 \times 16.00 \text{ g/mole} =

The molar mass of Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> is 357.49 \text{ g/mole}
```

Understanding Check: What is the molar mass of magnesium nitrate, Mg(NO₃)₂?

Mole-Mass Conversions for Ionic Compounds


Mole-Mass conversions for ionic compounds are done *exactly* as we did for covalent compounds; use the molar mass as a conversion factor.

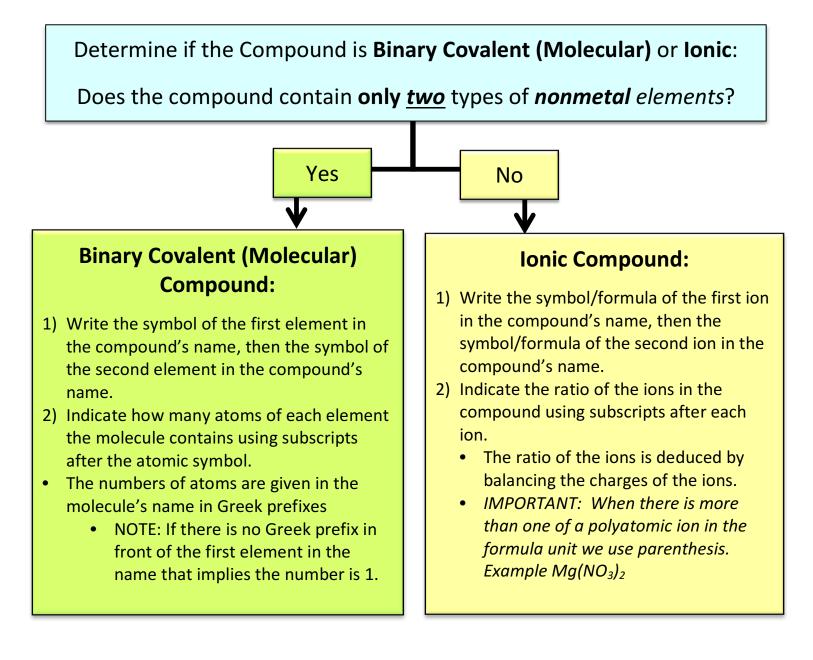
You Try One: What is the mass (grams) of 4.95 moles of Mg(NO₃)₂?

Naming Compounds Tutorial and Worksheet

Since we use different methods in naming binary covalent (molecular) compounds and ionic compounds, the **first step** in naming or writing the formula of a compound is to **determine which of the 2 compound classes it belongs**. This can be done as follows:

Binary covalent compounds will contain **only** *two types of non-metal elements*. There may be more than one of each element. For example CO_2 contains just two types of elements, carbon and oxygen. We will discuss naming covalent compounds that contain more than two types of elements, like glucose $C_6H_{12}O_6$, in later chapters.

Once it is determined that the compound is **ionic** or **covalent**, the student can be asked to do either of the following:


1) Given the **name** of the compound, write the **formula**.

<u>Or</u>

2) Given the **formula** of the compound, write the **name**.

In this tutorial we will review the process for achieving these 2 objectives and practice with some worksheet problems. First, we will review and practice how to write formulas for compounds when given the compound's name. Second, we will review and practice how to write the name of a compound when given the compound's formula.

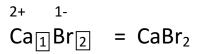
Given the Name of the Compound, Writing Formulas for Compounds

Writing the Formulas of Ionic Compounds

Example: Write the formula for **calcium bromide**.

1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.

Ca Br


- 2) Indicate the ratio of the ions in the compound using subscripts after each ion.
 - This step involves filling in the subscripts boxes as we did in the lecture:

Ca_∏Br_□

- The ratio of the ions is deduced by **balancing the charges** of the ions.
 - This is done so that the **total charge** in the crystal, when large numbers of cations and anions combine, is **equal to zero**.
 - We find the ion's charge from its position on the periodic table <u>or</u> we look it up in a table in the case of polyatomic ions.
 - Transition metal with varying charges will be written in the compound name in Roman numerals.
- First, temporarily write the charge of each ion above the ion's symbol.
 2+ 1-

- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need **two** bromide ions, each has a charge of (1-) to cancel the (2+) charge of the calcium ion:
 - 2(-1) + (+2) = 0 zero total charge.

• We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

$$Ca_1^{2+}$$
 Br_2^{1-} = CaBr₂

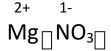
• Note, we do not leave the charges written above the symbols in the completed formula.

IMPORTANT: When there is more than one of a polyatomic ion in the formula, we use parenthesis.

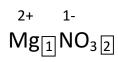
• Not applicable in this example since there are no polyatomic ions in calcium bromide.

Examples: Writing the Formulas of Ionic Compounds

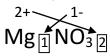
Write the formula for magnesium nitrate.


- 1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.
 - When you see a polyatomic ion (nitrate), look up the formula and charge in the table of polyatomic ions.

Mg NO_3


- 2) Indicate the ratio of the ions in the compound using subscripts after each ion.
 - a. This step involves filling in the subscripts boxes as we did in the lecture:

$Mg_{n}NO_{3}$


- The ratio of the ions is deduced by **balancing the charges** of the ions.
 - This is done so that the **total charge** in the crystal, when large numbers of cations and anions combine, is **equal to zero**.
 - We find the ion's charge from its position on the periodic table <u>or</u> we look it up in a table in the case of polyatomic ions.
 - Transition metal with varying charges will be written in the compound name in Roman numerals.
- First, temporarily write the charge of each ion above the ion's symbol.

- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need **two** nitrate ions, each has a charge of (1-) to cancel the (2+) charge of the magnesium ion:
 - 2(-1) + (+2) = 0 zero total charge.

• We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

IMPORTANT: When there is more than one of a polyatomic ion in the formula unit we use parenthesis. There are **2 ions** of nitrate in magnesium nitrate

$$Mg_{1}NO_{32} = Mg(NO_{3})_{2}$$

In compound where there is just **one formula unit** of a polyatomic ion, no parenthesis are needed. An example of this is **sodium nitrate:** $NaNO_3$

Examples: Writing the Formulas of Ionic Compounds

Write the formula for **iron(II) phosphate**.

- 1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.
 - When you see a polyatomic ion (phosphate in this case), look up the formula and charge in the table of polyatomic ions.

Fe PO₄


- 2) Indicate the ratio of the ions in the compound using subscripts after each ion.
 - b. This step involves filling in the subscripts boxes as we did in the lecture:

$Fe_{\square}PO_{4}_{\square}$

- The ratio of the ions is deduced by **balancing the charges** of the ions.
 - This is done so that the **total charge** in the crystal, when large numbers of cations and anions combine, is **equal to zero**.
 - We find the ion's charge from its position on the periodic table <u>or</u> we look it up in a table in the case of polyatomic ions.
 - Transition metal with varying charges will be written in the compound name in Roman numerals.
 - In this example, now we know the charge on the Fe ion is 2+
- First, temporarily write the charge of each ion above the ion's symbol.
 2+ 3-

- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need **two** phosphate ions, each has a charge of (3-) and three Fe²⁺ ions to balance the charge:
 - 2(-3) + 3(-2) = 0 zero total charge.

• We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

IMPORTANT: When there is more than one of a polyatomic ion in the formula unit we use parenthesis. There are **2 ions** of phosphate in iron(II)phosphate.

$$Fe_{3}PO_{42} = Fe_{3}(PO_{4})_{2}$$

Examples: Writing the Formulas of Ionic Compounds

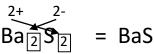
Write the formula for **barium sulfide**.

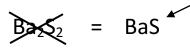
1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.

Ba S

- 2) Indicate the ratio of the ions in the compound using subscripts after each ion.
 - This step involves filling in the subscripts boxes as we did in the lecture:

Ba_□S_□


- The ratio of the ions is deduced by **balancing the charges** of the ions.
 - This is done so that the **total charge** in the crystal, when large numbers of cations and anions combine, is **equal to zero**.
 - We find the ion's charge from its position on the periodic table <u>or</u> we look it up in a table in the case of polyatomic ions.
 - Transition metal with varying charges will be written in the compound name in Roman numerals.
- First, temporarily write the charge of each ion above the ion's symbol.
 2+ 2-


- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need **one** sulfide ion, with a charge of (2-) to cancel the (2+) charge of the barium ion:
 - (-2) + (+2) = 0 zero total charge.

$$Ba_{1}S_{1} = BaS$$

• We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

• Note, the subscripts in ionic compound represent the ratio in which large numbers of anions and cations combine to form the ionic compounds. Since we want the **lowest ratio**: we use 1:1, since 2:2 = 1:1

Write the formula for the following ionic compounds: (see next page for key)

- sodium bicarbonate
- sodium fluoride
- iron (III) chloride
- sodium carbonate
- copper (II) sulfate
- magnesium hydroxide
- barium nitrate _____
- lithium sulfate
- magnesium chloride _____
- silver nitrate
- aluminum sulfate _____
- calcium hydroxide _____
- calcium sulfate _____
- mercury (II) nitrate _____
- lead (IV) nitrate
- magnesium iodide
- sodium nitride _____

- sodium bicarbonate NaHCO3
- sodium fluoride NaF
- iron (III) chloride FeCl₃
- sodium carbonate Na₂CO₃
- copper (II) sulfate CuSO₄
- magnesium hydroxide Mg(OH)₂
- barium nitrate Ba(NO₃)₂
- lithium sulfate Li₂SO₄
- magnesium chloride MgCl₂
- silver nitrate AgNO₃
- aluminum sulfate Al₂(SO₄)₃
- calcium hydroxide Ca(OH)₂
- calcium sulfate CaSO₄
- mercury (II) nitrate _Hg(NO₃)₂
- lead (IV) nitrate Pb(NO₃)₄
- magnesium iodide Mgl₂
- sodium nitride Na₃N

Writing the Formulas of Covalent Compounds

- 1) Write the symbol/formula of the first element in the compound's name, then the symbol/formula of the second element in the compound's name.
- 2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.
 - The numbers of atoms are given in the molecule's name in Greek prefixes
 - NOTE: If there is no Greek prefix in front of the first element in the name, that means the number is 1.

Example: Write the formula of **dinitrogen tetrafluoride**.

1) Write the symbol/formula of the first element in the compound's name, then the symbol/formula of the second element in the compound's name.

ΝF

2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

- The numbers of atoms are given in the molecule's name in Greek prefixes.
 - **di**nitrogen **tetra**fluoride
 - see your chapter 3 notes for a list of the Greek prefixes

 N_2F_4

- **NOTE**: If there is no Greek prefix in front of the first element in the name, then the number is 1.
 - Example carbon tetrachloride = CCl₄

Example: Write the formula of **carbon disulfide**.

1) Write the symbol/formula of the first element in the compound's name, then the symbol/formula of the second element in the compound's name.

C S

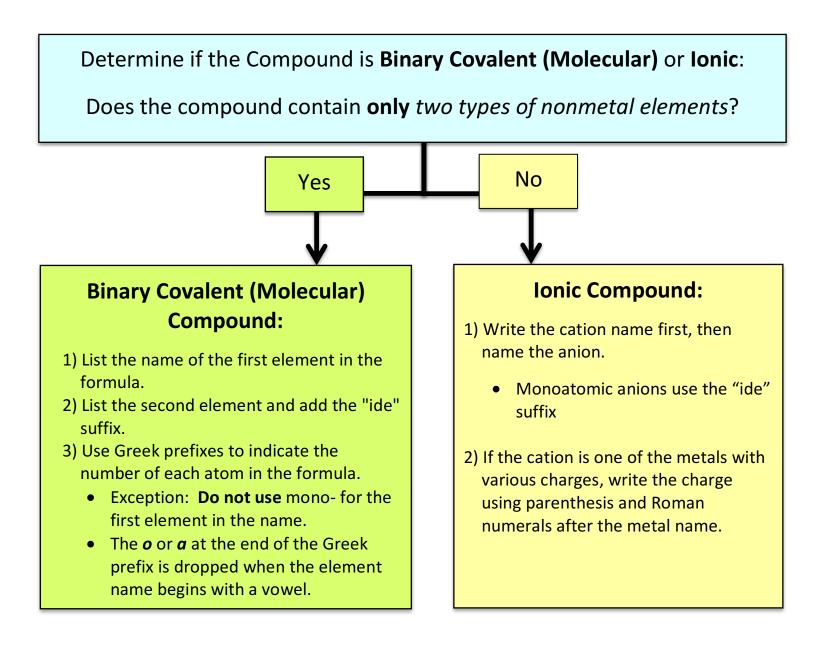
2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

$C_{\Box}S_{\Box}$

- The numbers of atoms are given in the molecule's name in Greek prefixes.
 - carbon **di**sulfide
 - see your chapter 3 notes for a list of the Greek prefixes

$$C_1S_2 = CS_2$$

• **NOTE**: If there is no Greek prefix in front of the first element in the name, then the number is 1.


Write the formulas for the following covalent compounds:

See next page for KEY

a. disulfur tetrafluoride	
b. carbon trioxide	
c. nitrogen pentoxide	
d. nitrogen tribromide	
e. dinitrogen heptachloride	
f. carbon tetrachloride	
g. hydrogen monochloride	
h. trihydrogen monophosphide	
i. dihydrogen monoxide	

KEY

- a. disulfur tetrafluoride S_2F_4
- b. carbon trioxide CO₃
- c. nitrogen pentoxide NO₅
- d. nitrogen tribromide NBr₃
- e. dinitrogen heptachloride N_2Cl_7
- f. carbon tetrachloride CCl_4
- g. hydrogen monochloride HCl
- h. trihydrogen monophosphide H_3P
- i. dihydrogen monoxide H_2O

Writing the Names of Ionic Compounds

Example: Write the name for CaBr₂

- 1) Write the cation name first, then name the anion.
 - monoatomic anions use the "ide" suffix

calcium bromide

2) If the cation is one of the transition metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

• Not necessary here, there is not a transition metal present

Example: Write the name for Mg(NO₃)₂

- 1) Write the cation name first, then name the anion.
 - monoatomic anions use the "ide" suffix
 - Here we notice that the anion is a **polyatomic ion**. Get the name from the polyatomic ion table (in your notes or textbook). *You will be given a copy of the polyatomic ion table on your exams*.
 - **<u>Do not</u>** change the suffix to "ide" with polyatomic ions:

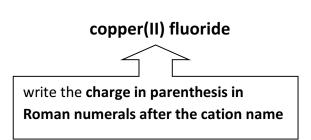
magnesium nitrate

2) If the cation is one of the transition metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

• Not necessary here, there is not a transition metal present

Writing the Names of Ionic Compounds

Example: Write the name for CuF₂


- 1) Write the cation name first, then name the anion.
 - monoatomic anions use the "ide" suffix

copper fluoride

2) If the cation is one of the *transition metals* with various charges, write the **charge using parenthesis and Roman numerals** after the metal name.

copper(?) fluoride

- We must figure out what the charge is on the copper, we can deduce the charge on the transition metal cations from the charge on the anions
 - Recall that the total charge for any compound must equal zero.
 - Since there are two fluorides, each with a charge of (1-) and there is only one copper, we can conclude that the charge on the copper must be (2+).
 - You can think of this as the reverse criss-cross! See chapter 3 notes for more details.

Write the names of the following compounds:

See next page for key	
NaCl	
Fe ₂ (CO ₃) ₃	
Cu(OH) ₂	
(NH ₄) ₂ SO ₄	
LiNO ₃	
BaSO ₄	_
Mg(NO ₃) ₂	
AgCl	_
Al(OH) ₃	
CaSO ₄	_
FeS	
FeCl ₃	
Nal	
MgCO ₃	

KEY

NaCl sodium chloride

Fe₂(CO₃)₃ iron(III) carbonate

Cu(OH)₂ copper(II) hydroxide

 $(NH_4)_2SO_4$ ammonium sulfate

LiNO₃ lithium nitrate

BaSO₄ barium sulfate

Mg(NO₃)₂ magnesium nitrate

AgCl silver chloride

• (note: silver is one of the transition metals that only occurs as a (1+) ion)

Al(OH)₃ aluminum hydroxide

CaSO₄ calcium sulfate

FeS Iron(II) sulfide

FeCl₃ iron(III) chloride

Nal sodium iodide

MgCO₃ magnesium carbonate

Writing the Names of Covalent Compounds

- 1) List the name of the first element in the formula.
- 2) List the second element and add the –ide suffix.
- 3) Use Greek prefixes to indicate the number of each atom in the formula.
 - Exception: do not use mono- for the first element in the name.
 - The *o* or *a* at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel

Example: Write the name for N_2S_4

1) List the name of the first element in the formula.

nitrogen

2) List the second element and add the -ide suffix.

nitrogen sulfide

- 3) Use Greek prefixes to indicate the number of each atom in the formula.
 - See your textbook or lecture notes for a table of the Greek prefixes.
 - ____nitrogen _____sulfide

dinitrogen tetrasulfide

- Exception: do not use mono- for the first element in the name.
 - Not applicable in this example
- The *o* or *a* at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
 - Not applicable in this example

Example: Write the name for SO₃

1) List the name of the first element in the formula.

sulfur

2) List the second element and add the -ide suffix.

sulfur oxide

3) Use Greek prefixes to indicate the number of each atom in the formula.

_____ sulfur _____ oxide

sulfur trioxide

- Exception: do not use **mono-** for the *first* element in the name.
 - NOTE, we did not write **mono**sulfur because of this rule!
- The *o* or *a* at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
 - Not applicable in this example

Example: Write the name for SO₂

1) List the name of the first element in the formula.

sulfur

2) List the second element and add the –ide suffix.

sulfur oxide

3) Use Greek prefixes to indicate the number of each atom in the formula.

_____ sulfur _____ oxide

sulfur dioxide

- Exception: do not use **mono-** for the *first* element in the name.
 - NOTE, we did not write **mono**sulfur because of this rule!
- The *o* or *a* at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
 - Not applicable in this example

Example: Write the name for CO

1) List the name of the first element in the formula.

carbon

2) List the second element and add the –ide suffix.

carbon oxide

3) Use Greek prefixes to indicate the number of each atom in the formula.

_____ carbon _____ oxide

carbon monoxide

- Exception: do not use **mono-** for the *first* element in the name.
 - NOTE, we did not write **monocarbon** because of this rule!
- The *o* or *a* at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
 - NOTE, we did not write **mon<u>oo</u>xide** because of this rule!

Write the names of the following compounds:

See next page for key

- a. Br₂I₄
- b. P₅F₈ _____
- c. NO₅
 Remember: The *o* or *a* at the end of the Greek pre-fix is usually dropped when
 - Remember: The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel

- a. Br_2I_4 dibromine tetriodide
- b. P₅F₈ pentaphosphorus octafluoride
- c. NO₅ nitrogen pentoxide
 - The *o* or *a* at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
 - NOTE, we did not write **pent<u>ao</u>xygen** because of this rule!
- d. NBr₃ nitrogen tribromide
- e. N_2O_5 dinitrogen pentoxide
- f. BrCl₃ bromine trichloride
- g. H₂S dihydrogen monosulfide
- h. N₂O dinitrogen monoxide

Molar Mass Worksheet and Key

For the following compounds, write the chemical formula and determine the molar mass. Write the units!

water

sodium carbonate

carbon dioxide

sodium chloride

calcium hydroxide

barium nitrate

hydrogen monochloride

sulfuric acid (H₂SO₄)

potassium permanganate (KMnO₄)

acetic acid (C₂H₄O₂)

SEE NEXT PAGE FOR KEY

Molar Mass Worksheet Key

Water (H₂O)

Element	Number	MM
Н	2	1.01 g/mole
0	1	16.00 g/mole
Total MN	f = 18.02 g/m	ole

carbon dioxide, CO₂

Element	Number	MM	
0	2	16.00	g/mole
С	1	12.01	g/mole
Total MM	4 = 44.01	g/mole	

sodium chloride, NaCl

Element	Number	MM	
Cl	1	35.45	g/mole
Na	1	22.99	g/mole
Total MM	1 = 58.44	g/mole	

calcium hydroxide, Ca(OH)₂

Element	Number	MM	
Н	2	1.01	g/mole
0	2	16.00	g/mole
Ca	1	40.08	g/mole
Total MN	4 = 74.10	g/mole	

potassium permanganate (KMnO₄)

Element	Number	MM	
0	4	16.00	g/mole
Mn	1	54.94	g/mole
Κ	1	39.10	g/mole
Total MM	1 = 158.04	g/mole	

sodium carbonate, Na₂CO₃

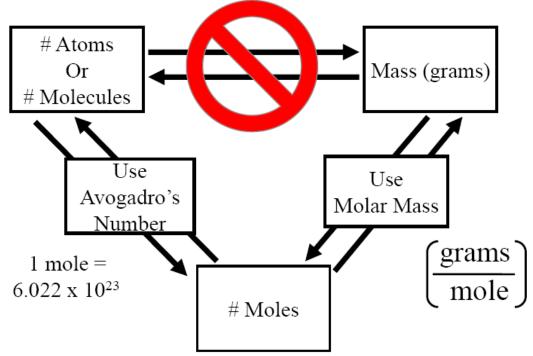
Element	Number	MM	
0	3	16.00	g/mole
Na	2	22.99	g/mole
С	1	12.01	g/mole
Total MW	V = 105.99	g/mole	

barium nitrate, Ba(NO₃)₂

Element	Number	MM		
0	6	16.00	g/mole	
Ba	1	137.33	g/mole	
N	2	14.01	g/mole	
Total MM = 261.35 g/mole				

hydrogen monochloride, HCl

Element	Number	MM	
Cl	1	35.45	g/mole
Н	1	1.01	g/mole
Total MN			


sulfuric acid (H₂SO₄)

Element	Number	MM		
S	1	32.07	g/mole	
Н	2	1.01	g/mole	
0	4	16.00	g/mole	
Total MM = 98.09 g/mole				

acetic acid (C₂H₄O₂)

Element	Number	MM		
Н	4	1.01	g/mole	
0	2	16.00	g/mole	
С	2	12.01	g/mole	
Total MM = 60.06 g/mole				

Moles, Molecules, and Grams Worksheet and Key

1) How many moles are there in 24.0 grams of FeF_3 ?

2) How many moles are there in 458 grams of Na₂SO₄?

3) How many grams are there in 2.30 x 10^{24} atoms of silver?

4) How many grams are there in 7.40 moles of AgNO₃?

SEE LAST PAGE FOR KEY

5) How many grams are there in 7.50 x 10^{23} molecules of H₂SO₄?

6) How many molecules are there in 122 grams of NO₂?

7) How many grams are there in 9.40 x 10^{25} molecules of H₂?

8) How many molecules are there in 237 grams of CCl₄?

9) How many molecules are there in 2.30 grams of NH₃?

10) How many grams are there in 3.30×10^{23} molecules of N₂I₆?

11) How many moles are there in 2.00 x 10^{19} molecules of CCl₄?

12) How many grams are there in 1.00×10^{24} molecules of BCl₃?

13) How many grams are there in 4.50 moles of $Ba(NO_2)_2$?

14) How many molecules are there in 9.34 grams of water?

Moles, Molecules, and Grams Worksheet – Answer Key

1) How many moles are there in 24.0 grams of FeF₃? .213 moles

2) How many moles are there in 458 grams of Na₂SO₄? **3.22 moles**

3) How many grams are there in 2.30 x 10^{24} atoms of silver? **412 grams**

4) How many grams are there in 7.40 moles of AgNO₃? **1260 grams (note:3 significant figures)**

5) How many grams are there in 7.50 x 10^{23} molecules of H₂SO₄? **122 grams**

6) How many molecules are there in 122 grams of NO₂? **1.60 x 10^{24} molecules**

7) How many grams are there in 9.40 x 10^{25} molecules of H₂? **315 grams**

8) How many molecules are there in 237 grams of CCl_4 ? 9.28 x 10²³ molecules

9) How many molecules are there in 2.30 grams of NH₃? 8.13 x 10²² molecules

10) How many grams are there in 3.30×10^{23} molecules of N₂I₆? **433 grams** 11) How many moles are there in 2.00 x 10¹⁹ molecules of CCl₄? **3.32 x 10⁻⁵ moles**

12) How many grams are there in 1.00×10^{24} molecules of BCl₃? **195 grams**

13) How many grams are there in 4.50 moles of Ba(NO₂)₂? **1030 grams (3 significant figures)**

14) How many molecules are there in 9.34 grams of water? 3.12 x 10^{23} molecules

Chapter 4 Lecture Notes

Educational Goals

- 1. Given the formula of a diatomic or small molecule, draw the line bond structure.
- Understand and construct condensed and skeletal structural formulas given the line bond 2 structures and vice versa.
- 3. Given the structural formula, determine the formal charge of **O** and **N** atoms.
- Given the line bond structure of a *small molecule*, predict the molecular shape and bond angle(s). 4.
- Given the structure of a *large molecule*, predict the **bond angle(s)** around any atom. 5.
- Define electronegativity and explain its relationship to *polar covalent bonds*. 6.
- Give a simple rule that can be used to predict whether or not a *covalent bond* is **polar**. 7.
- Classify diatomic, small, and large *molecules* as **polar** or **nonpolar**. 8.
- Describe, compare, and contrast the five noncovalent interactions. 9.

Review: The Octet Rule in the Formation of Molecules

Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an _____ of electrons in its outermost shell (n).

Exception to the octet rule ______ and _____.

• *Hydrogen* and *helium* have filled outer shells with just electrons.

Covalent bonding results from the *sharing* of electron pairs between two atoms.

Method for Drawing Line Bond Structures

Step 1: Count the total number of ______ from all the atoms in the molecule.

Example: H₂O

2 H atoms 2 x $1e^{-} = 2e^{-}$

1 O atom 1 x $6e^{-} = \underline{6e^{-}}$ Total number of valence $e_{-} = 8e_{-}$

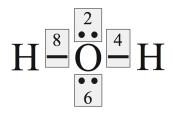
The line bond structure of H₂O will have 8 electrons

Step 2: Draw the "Skeleton Structure"

- Attach the atoms together with ______ in the most symmetric way possible.

H - O - H

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.


Total number of valence e^{-} $8e^{-}$ *Minus* electrons used in skeleton $\frac{-4e^{-}}{4e^{-}}$ Electrons remaining **to be added** = $4e^{-}$

Step 4: Add the remaining electrons as ______ as evenly as possible on all atoms except hydrogen.

$$H - O - H$$

Step 5: Check for _____.

 Are there 8 electrons around all atoms (except hydrogen)? If YES, you are finished!

Step 6 (if needed): Use lone pairs to make ______ or _____ bonds until the octet rule is satisfied for *all atoms* in the molecule.

- Let's do a couple of examples to see how that works!
- We will do O₂, and N₂.

Example O₂

Step 1: Count the total number of valence electrons from all the atoms in the molecule. - How many **valence electrons** in O₂?

2 O atoms 2 x $6e^{-} = 12e^{-}$ Total number of valence $e^{-} = 12e^{-}$

Step 2: Draw the "Skeleton Structure"

-Attach the atoms together with single bonds in the most symmetric way possible.

O - O

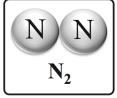
Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^ 12e^-$ Minus electrons used in skeleton $-2e^-$ Electrons remaining to be added = $10e^-$

Step 4: Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.

Step 5: Check for Octets

- Are there 8 electrons around all atoms (except hydrogen)?


- If NO, use lone pairs to make double or triple bonds.

Step 6 (if needed): Use lone pairs to make **double** or **triple bonds** until the octet rule is satisfied for *all atoms* in the molecule.

Example N₂

Step 1: Count the total number of valence electrons from all the atoms in the molecule.

- How many valence electrons in N₂?

2 N atoms 2 x $5e^{-} = 10e^{-}$ Total number of valence $e^{-} = 10e^{-}$

Step 2: Draw the "Skeleton Structure"

-Attach the atoms together with single bonds in the most symmetric way possible.

$$N - N$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence e^{-1} $10e^{-1}$ Minus electrons used in skeleton $-2e^{-1}$ Electrons remaining to be added $8e^{-1}$

Step 4: Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.

$$N - N$$

Step 5: Check for Octets

- Are there 8 electrons around all atoms (except hydrogen)?

– If NO, use lone pairs to make double or triple bonds.

Step 6 (if needed): Use lone pairs to make **double** or **triple bonds** until the octet rule is satisfied for *all atoms* in the molecule.

-			al number of atoms in the		Step 2: Draw the "Skeleton Structure"-Attach the atoms together with singlebonds in the most symmetric way possible.			
Molecu	lar formula	ı of r	nolecule	Central atom is:				
Atom	Number of atoms		Number of valence electrons per atom	Totals	Draw skeleton:			
N	1	Х		=				
Н	3	х		=				
			line bond strue		# of electrons used in skeleton = (multiply # of bonds in skeleton by 2)			
make t		ı str	ucture from t	ectrons used to he total	Step 4: First: Re-draw skeleton here:			
	of electron ep 1 above		structure					
# of electrons used in skeleton (from step 2 above)					Next, Add the remaining electrons as lone pairs as evenly as possible on all			
Remaining # electrons to be added=				atoms except hydrogen.				
Step 5: Check for Octets Check the structure in step 4 for octets of electrons around each atom (except for hydrogen).					Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.			
If the octet rule is satisfied, you are done . If the octet rule is <u>not</u> satisfied, go the Step 6 .								

electron		tal number of e atoms in the molecule		Step 2: Draw the "Skeleton Structure" -Attach the atoms together with single bonds in the most symmetric way possible.
Atom	Number of atoms	Number of valence electrons per atom	Totals = =	Central atom is: Draw skeleton:
Total #	of electrons in	line bond strue	cture =	# of electrons used in skeleton = (multiply # of bonds in skeleton by 2)
make the number Total #			Step 4: First: Re-draw skeleton here:	
(from st	ectrons used in tep 2 above) ing # electron	s to be added=	Next, Add the remaining electrons as <u>lone pairs</u> as evenly as possible on all atoms except hydrogen.	
Check t		ctets step 4 for octe cept for hydrog	Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.	
		sfied, you are (satisfied, go th		

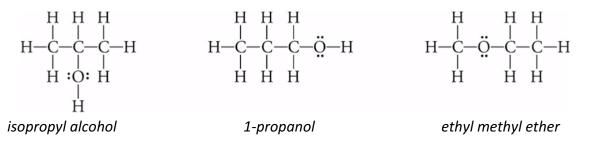
Structural Formulas

A molecular formula shows us the number and types of atoms contained in a molecule.

• Example of a molecular formula: H_2O

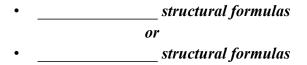
Drawings, such as *line bond structures*, that show the ______ of atoms within molecules are called ______ formulas.

• Example of a structural formula:
$$H - \overset{\bullet}{O} - H$$


The molecular formula of *isopropyl alcohol* (often called rubbing alcohol) is C_3H_8O .

The structural formula of *isopropyl alcohol* is:

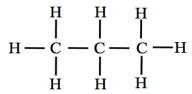
Which of these two types of formulas, the *molecular formula* or the *structural formula*, do you think is more informative?


 $\begin{array}{cccc} & & & & & & \\ H - C - C - C - C - H \\ & & & & \\ H & : O: H \\ & & & \\ & & & \\ & & & \\ \end{array}$

There are actually three *completely different molecules* that have this same molecular formula of C₃H₈O:

Line bond structural formulas **explicitly** show all the information about how the atoms are connected and the presence of all single bonds, double bonds, triple bonds and lone pairs.

In practice, chemists often use one of two **short-cut** forms of structural formulas:


Condensed Structural Formulas (Condensed Structures)

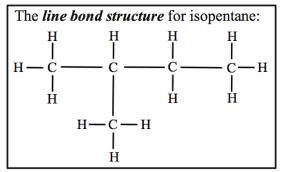
When drawing condensed structures:

- Single bonds between carbon and hydrogen *are omitted*.
 - Example: a carbon bonded to three hydrogen atoms is drawn as "CH₃"
- Single bonds between carbons (C-C) *can be* omitted.
- Single bonds between oxygen or nitrogen *and* hydrogen *can be* omitted.
 - **Example:** an oxygen bonded to one hydrogen atom can be drawn as "**OH**."
- Bonds between *all other* pairs of atoms **must** be drawn.
- Lone pairs *can be* omitted.
- Double and triple bonds *are always drawn*.

Example: Propane (C₃H₈)

The **connectivity** of the carbon and hydrogen atoms can be seen ______ in propane's *line bond structure*:

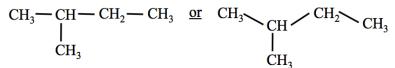
In *condensed structures*, ______bonds between carbon and hydrogen atoms *are omitted*. We can draw the condensed structure of propane as:


$$CH_3 - CH_2 - CH_3$$
 or $CH_3 \sim CH_2 \sim CH_3$

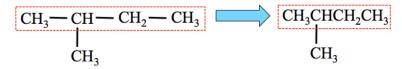
When drawing condensed structures, for *non* auto-graded use, carbon-carbon single bonds can be omitted when the carbon atoms are in a ______ such as the three carbons in propane:

CH₃CH₂CH₃

Even though not all of the bonds are drawn in condensed structures, they are ______ and can be *unequivocally* known.


Example: Isopentane (C₅H₁₂)

In isopentane, there are four carbons bonded in a *linear sequence*.


There is one carbon that "_____" from the *linear* sequence.

In *condensed structures*, **single bonds** between carbon and hydrogen atoms *are omitted*. We can draw the condensed structure of isopentane as:

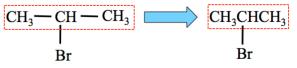
When you are asked to draw *condensed structures* for auto-graded, online problem sets you should draw **all of the carbon-carbon bonds** *as shown above*.

- For non auto-graded use, further condensation is possible.
- *Single bonds* between carbon atoms *in a linear sequence* can be omitted as in the case of the four carbons in a linear sequence in isopentane (as shown below).

If you **are not** a Saddleback College student, check with your instructor as to which form of condensed structures she/he wishes you to use.

Example: Isopropyl bromide (C₃H₇Br)

The *line bond structure* of isopropyl bromide is:

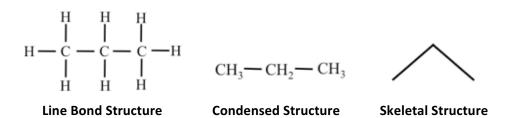

$$\begin{array}{cccc} H & H & H \\ H - C - C - C - C - H \\ I & I \\ H & :Br: H \end{array}$$

In *condensed structures*, single bonds between atom pairs *other than* C-C, C-H, O-H, and N-H are *always drawn*.

• Therefore the **C-Br** bond is drawn in the condensed structures:

$$\begin{array}{ccc} CH_3 - CH - CH_3 & \underline{or} & CH_3 \\ | & & | \\ Br & & Br \end{array}$$

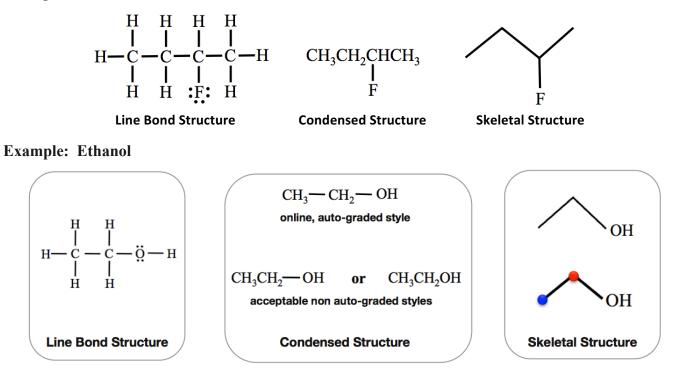
- Lone pairs *can be omitted* in condensed structures.
- For non auto-graded use, further condensation is possible.
- *Single bonds* between **carbon** atoms *in a linear sequence* can be omitted as in the case of the three carbons in a **linear sequence** in isopropyl bromide.

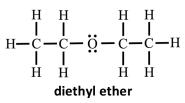

Skeletal Structural Formulas (Skeletal Structures)

Another *structural formula* that chemists use in order to more easily and quickly draw molecules is called the **structure**.

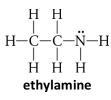
When drawing skeletal structures:

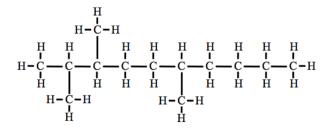
- Carbons are not drawn; they are *implied* to exist where lines (bonds) _____ or at the _____ of a line (bond).
- Hydrogens are *omitted* if they are bonded to carbon.
- Bonds between oxygen or nitrogen *and* hydrogen may be omitted.
- Atoms other than carbon and hydrogen are *always* drawn.
- Lone pairs *can be* omitted.


Example: Propane (C₃H₈)


If the hydrogens bonded to carbon are omitted from skeletal structures, how do we determine how many hydrogens are bonded to each carbon? The answer to this is quite simple and is related to the octet rule:

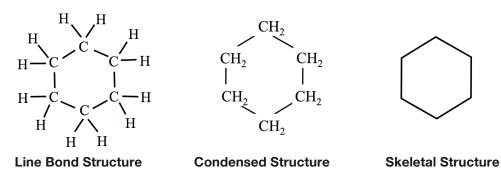
- We *never* find *lone pairs* on carbon in any molecule that contains more than one carbon atom.
- The octet rule requires that carbons will **always** have *four pairs of shared electrons around them*, therefore we can deduce the number of *hydrogens* that are bonded to each carbon in a skeletal structure.


Example: 2-Fluorobutane


Understanding Check: Draw condensed and skeletal structur of diethyl ether.

Understanding Check: Draw condensed and skeletal structure of ethylamine.

Understanding Check: The line bond structure of a large hydrocarbon molecule is shown below. Draw the **condensed structure and** the **skeletal structure** of this molecule.



Structural Formulas of Cyclic Compounds

Many compounds contain atoms bonded, not in a *linear sequence*, but in a "ring" pattern.

Molecules that contain rings of atoms are called ______ compounds.

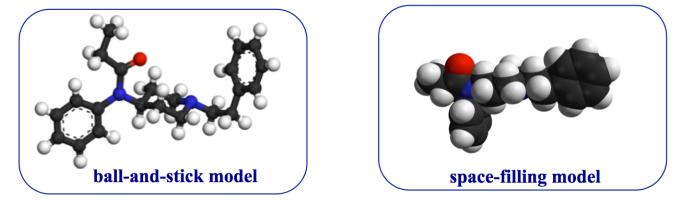
• An example of a *cyclic compound* is a molecule called cyclohexane. The three structural formulas for cyclohexane are:

Molecular Geometry

Let's define **molecular geometry** as the ______ *arrangement* of a molecule's atoms.

Molecules very rarely take the shapes that are drawn in their structural formulas.

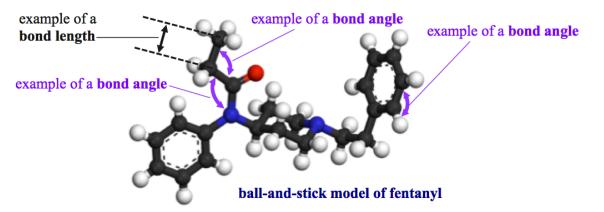
Structural formulas, whether line bond, condensed, or skeletal, are either **one-** or **two-dimensional**.


Most molecules are _____ dimensional.

- Line bond structures are commonly drawn with the lines/bonds at 90° angles, but the **bond angles** in molecules (the angle between covalent bonds), with rare exceptions, are not at 90°.
- Skeletal and condensed structures often use bond angles of 90° or approximately 120° only for convenience in depicting the bonding pattern connectivity, not necessarily to represent the actual bond angles/geometry of the molecule.

Example: Fentanyl

The *skeletal structure* of fentanyl is:


The "*geometry*" of the molecule can be depicted in two types of views:

Definition: a ______ is the angle between two covalent bonds.

Structural formulas, whether line bond, condensed, or skeletal, *do not explicitly show the _____ bond angles within molecules*. However, **the actual bond angles can be** ______ **from a molecule's structural formula**.

To know the *exact* molecular geometry, we must know all of the **bond angles** *and* **bond lengths** (distance between bonded atoms) within a molecule.

We will **ignore** variations in bond lengths since these relatively minor deviations in length *do not significantly affect the concepts to be discussed.*

Therefore, for our purposes, *predicting molecular geometry will be equivalent to predicting the* **bond angles** *within a molecule*.

When discussion molecular geometry and other concepts in this course, we will often use the following molecular size categories:

Molecular Size Category	Description	Example(s)			
Diatomic Molecule	Molecule contains only two atoms	H ₂	HCl		
Small Molecule	Molecule has <u>one</u> central atom with <u>all</u> other atoms bonded to the central atom	CH ₄	H ₂ O		
Large Molecule	Larger than <i>Small Molecule</i> ; there is <u>not</u> just one single, central atom with <u>all</u> the other atoms bonded to it	C ₃ H ₈	, , , , , , ,		

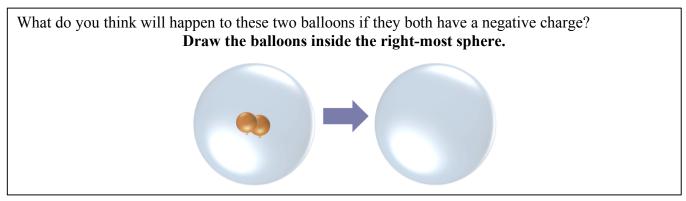
For *diatomic molecules*, the geometry of the molecule is always ______; the two atoms that make up the molecule exist on the same *line*.


• Examples: H₂ and HCl

For small and large molecules: **bond angles** can be predicted from the ______ *formula* using a model called Valence Shell Electron Pair Repulsion (VSEPR) Theory.

Valence Shell Electron Pair Repulsion (VSEPR) Theory: Predicting Bond Angles

The bond angles around *any particular atom of interest* in a molecule can be predicted because the *groups of electrons* surrounding this atom *will ______each other*.


• These ______ (abbreviated as **EG**) consist of, as the name implies, groups of electrons that are localized to a certain area.

You can easily recognize an EG by looking for one of the following:

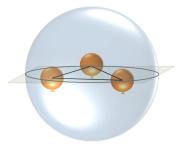
- (1) **A**_____ (an atom **bonded to** the *atom of interest*).
 - Each *bonded atom* counts as **one** electron group.
 - Whether the bonded atom is connected to the atom of interest with a **single**, **double**, or *triple bond*, *all of these shared electrons are localized within a particular region and therefore count as one EG*.
- (2) A _____ (on the *atom of interest*).
 - Each lone pair counts as *one electron group* (EG
 - Even though lone pairs are not attached to other atoms, they do occupy a localized area around the atom of interest and therefore repel other electron groups.

Example: 2 Electron Groups

Electrostatic ______ will cause the balloons to move as far apart from each other as possible.

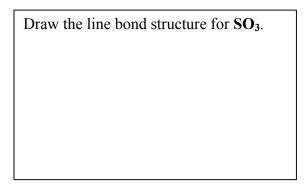
The same thing happens with _______

Draw the line bond structure for CO₂.


The central atom (C) goes in the _____ of the sphere.

- There are ______ electron groups around the central atom!
- Each bonded atom counts as ______ electron group.

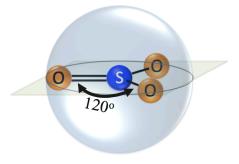
The electron groups are placed as ______ apart from each other as possible!


Both electron groups are on the same _____ and are at a _____ angle.

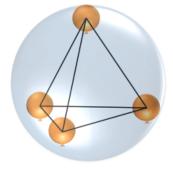
Example: 3 Electron Groups

If 3 negatively charged balloons are placed into a hollow, clear plastic sphere, electrostatic repulsion will cause the balloons to move as far apart from each other as possible.

The same thing happens with *electron groups*.



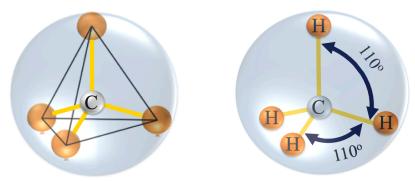
180°


The central atom (S) goes in the middle of the sphere.

There are ______ electron groups around the central atom!

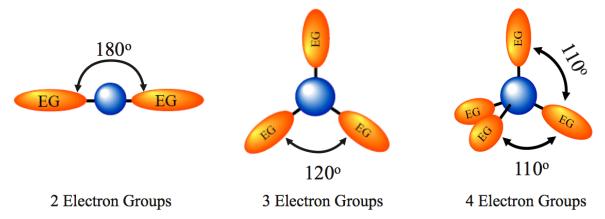
All electron groups are on the same _____ and are at _____ angles.

Example: 4 Electron Groups



If 4 negatively charged balloons are placed into a hollow, clear plastic sphere, electrostatic repulsion will cause the balloons to move as far apart from each other as possible.

The same thing happens with *electron groups*.


Draw the line bond structure for a methane molecule (CH₄).

The central atom (C) goes in the middle of the sphere. How many electron groups are around the central atom? There are <u>4</u> electron groups around the central atom! The electron groups are placed as far apart from each other as possible!

This arrangement is a 4-sided, 3-dimensional structure with electron groups at about angles.

Electron Arrangement Review

For two or three electron groups, the angles will deviate slightly from 120° and 110° when one (or more) of the electron groups is a lone pair.

• In this course, these slight deviations in bond angles can be *ignored* because their effects are **not significant** in the chemistry that will be discussed.

The Geometry of Diatomic Molecules

Molecular Size Category	Description	Example(s)			
Diatomic Molecule	Molecule contains only two atoms	H ₂	HCl		

For *diatomic molecules*, the geometry of the molecule is always **linear**; the two atoms that make up the molecule exist on the same line.

- Since there is only one bond (whether single, double, or triple), it does not make sense to talk about a bond angle.
- To discuss a bond angle, there must be two bonds originating from the same atom.

The Molecular Shape of Small Molecules

Molecular Size Category	Description	Example(s)			
Small Molecule	Molecule has <u>one</u> central atom with <u>all</u> other atoms bonded to the central atom	CH4	H ₂ O		

For *small molecules*, there exists one **central atom** with all other atoms bonded to the central atom, therefore the *only* bond angles that exist are between bonds ______ from the **central atom**.

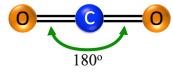
This simplified geometry allows us to categorize (name) particular *molecular* seen in small molecules.

Given the line bond structure, small molecules can be categorized by their molecular shape as follows:

Step 1. Get the Electron Group Arrangement

Find the *angle* between the electron groups and their arrangement around the central atom.

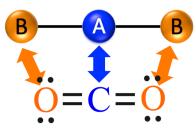
- **Two electron groups:** 180° angle, both electron groups are on the same line as the central atom.
- Three electron groups: 120° angles, all electron groups are on the same plane as the central atom.
 Angles will deviate slightly from 120° if *one of the electron groups* is a *lone pair*
- Four electron groups: 110° angles, occupies three dimensions in space.
 - Angles will deviate **slightly** from 110° if *one or more of the electron groups* is a *lone pair*


Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

Small molecules are categorized according to the arrangement of the atoms only.

Although **lone pairs** are also electron groups and are therefore important in determining the electron group arrangement in Step 1, they are treated as being "_____" when assigning molecular shape category names.

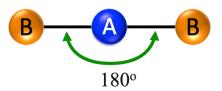
Draw the line bond structure of CO ₂	Example: The Molecular Shape of CO ₂
	Step 1. Get the Electron Group Arrangement
	How many electron groups are around the central atom?
	What is the bond angle in a 2-electron group arrangement? Choices: a) 180° b) 120° c) 110°


Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called _____

A very helpful tool for determining molecular shape is called the "ABE Method."

- "A" represents the central atom (carbon in our CO₂ example).
- "B" represents atom(s) bonded to the *central atom*. (each **oxygen** in our CO₂ example)
- "E" represents lone pair(s) on the central atom. (none seen in CO₂ since there are no lone pairs on the central atom)



The **ABE** Method uses a "general notation" that indicates the type and number of ______ (**B** or **E**) that surround the central atom (**A**).

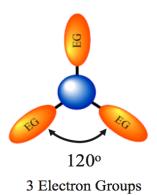
We write the **ABE** Method notation for CO_2 and *all* other small molecules that have *two* bonded atoms and *no* lone pairs *on the central atom* as "______."

• There are two oxygens bonded to the central atom therefore we write " B_2 ."

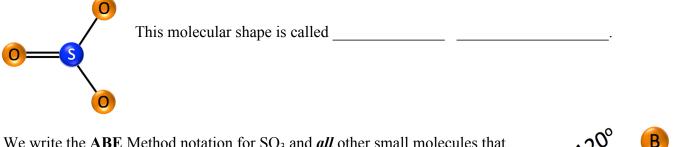
All AB₂ molecules have _____ bond angles and are in the _____ molecular shape category.

Molecular Shape Table

Number of Lone Pairs


	_	0 Lone Pairs	1 Lone Pair	2 Lone Pairs
(jg	2 EG			
Number of Electron Groups (EG)	3 EG			
Number of Ele	4 EG			

Three Electron Groups


Example: Draw the line bond structure of **SO**₃

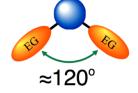
Step 1. Get the Electron Group Arrangement

• The number of electron groups *around the central atom* determines the **bond angles**.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

We write the **ABE** Method notation for SO₃ and *all* other small molecules that have *three* bonded atoms and *no* lone pair *on the central atom* as "_____."

• There are three oxygens bonded to the central atom therefore we write "B₃."


All AB₃ molecules have _____ bond angles and are in the *trigonal planar* molecular shape category.

Example: Draw the line bond structure of **ozone gas** (**O**₃).

Step 1. Get the Electron Group Arrangement

- The number of electron groups *around the central atom* determines the **bond angles**.
 - Three electron groups: 120° angles, all electron groups are on the same plane as the central atom. Angles will deviate slightly from 120° if *one of the electron groups* is a *lone pair*.

When determining **molecular shape**, we treat lone pair(s) as if they were **invisible**!

B

lone pair

≈120°

B

This molecular shape is called _____.

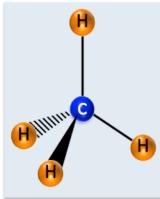
We write the **ABE** Method notation for O_3 and *all* other small molecules that have *two* **bonded atoms** and *one* lone pair *on the central atom* as "______."

- There are two oxygens bonded to the central atom therefore we write "B₂."
- There is **one lone pair** on the *central atom* therefore we write "E."

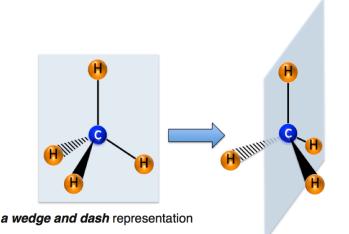
All AB₂E molecules have _____ bond angles and are in the *bent* molecular shape category.

В

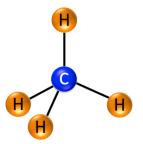
Example: Draw the line bond structure of **methane gas (CH₄).**


Step 1. Get the Electron Group Arrangement

- The number of electron groups *around the central atom* determines the **bond angles**.
 - Four electron groups: 110° angles, occupies three dimensions in space

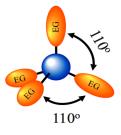

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

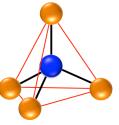
This molecular shape is called ______


We often use a ______ representation in order to illustrate a three-dimensional molecule on a two-dimensional surface such as a page or computer screen.

a wedge and dash representation

The implication of a wedge and dash representation

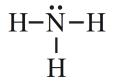



a perspective representation

Solid wedges indicate bonds that would be coming *out and above* the page (toward the viewer) in the three-dimensional object.

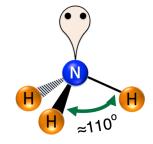
Dashed shapes indicate bonds that would be coming *out and behind* the page (away from the viewer) in the three-dimensional object.

Regular lines (neither wedge nor dash) indicate bonds that exist on the plane of the page in the three-dimensional object.

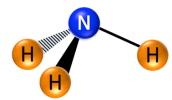


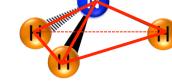
We write the **ABE** Method notation for CH₄ and *all* other small molecules that have *four* bonded atoms and *no* lone pair *on the central atom* as "______."

• There are four hydrogens bonded to the central atom therefore we write "B₄."

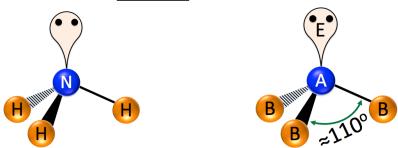

All AB₄ molecules have _____ bond angles and are in the *tetrahedral* molecular shape category.

Four Electron Group Example: Consider the line bond structure of ammonia (NH₃).


Step 1. Get the Electron Group Arrangement


- The number of electron groups *around the central atom* determines the **bond angles**.
 - Four electron groups: 110° angles, occupies three dimensions in space. Angles will deviate slightly from 110° if *one or more of the electron groups* is a *lone pair*.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.


• When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called _____

We write the **ABE** Method notation for NH₃ and *all* other small molecules that have *three* **bonded atoms** and *one* lone pair *on the central atom* as "..."

- There are three hydrogens bonded to the central atom therefore we write "B₃."
- There is **one lone pair** on the *central atom* therefore we write "E."

All AB₃E molecules have _____ bond angles and are in the *pyramidal* molecular shape category.

Four Electron Group Example: Consider the line bond structure of a water molecule (H₂O):

Step 1. Get the Electron Group Arrangement

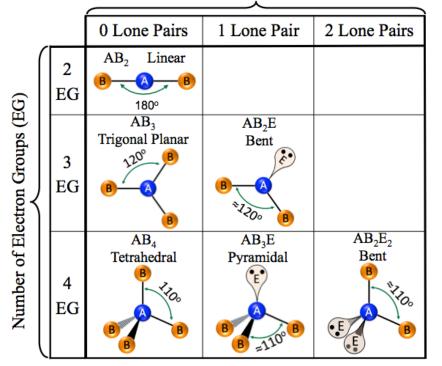
- The number of electron groups *around the central atom* determines the **bond angles**.
 - Four electron groups: 110° angles, occupies three dimensions in space. Angles will deviate slightly from 110° if *one or more of the electron groups* is a *lone pair*.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

• When determining **molecular shape**, we treat lone pair(s) as if they were **invisible**!

This molecular shape is called ______.

We write the **ABE** Method notation for H₂O and *all* other small molecules that have *two* bonded atoms and *two* lone pairs *on the central atom* as "______."



- There are two hydrogens bonded to the central atom therefore we write "B₂."
- There are **two lone pairs** on the *central atom* therefore we write "E₂."

All AB₂E₂ molecules have _____ bond angles and are in the *bent* molecular shape category.

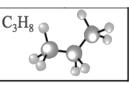
Molecular Shape Table

Number of Lone Pairs

Understanding Check: Molecular Shapes for Small Molecules

0

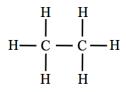
н

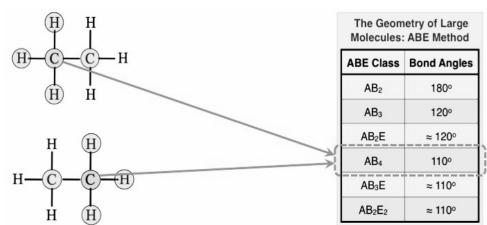

Determine the **bond angles** (or approximate bond angles) and the **molecular shape** category for each of the following *small molecules*:

- a) NF₃
- b) H₂S
- c) SO₂
- d) CS₂
- e) carbon tetrachloride

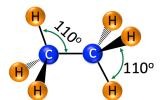
The Molecular Geometry of Large Molecules

Large there Molecule **cen**

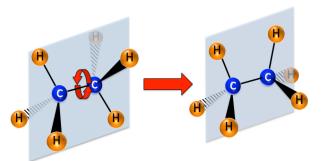

Larger than Small Molecule; there is <u>not</u> just one single, central atom with <u>all</u> the other atoms bonded to it


The **bond angles** around any ______ *of interest* in a **large molecule** can be predicted in the same manner that we used for small molecules.

• Simply use the **ABE** method, but in this case let "**A**" represent the *atom of interest* in the large molecule instead of the central atom of a small molecule.


Example: Consider the line bond structure of an ethane molecule:

What are the *bond angles* around **each** of the **carbon atoms** in an ethane molecule?

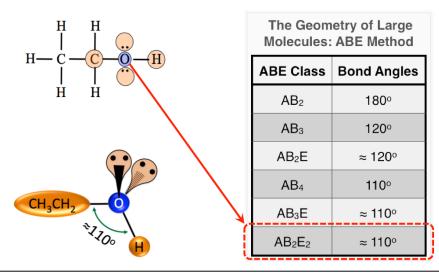


Molecules: ABE Method					
ABE Class	Bond Angles				
AB ₂	180º				
AB ₃	120°				
AB ₂ E	≈ 120º				
 AB ₄	110°				
AB ₃ E	≈ 110º				
AB ₂ E ₂	≈ 110º				

The illustration on the right shows the significance of lines, wedges, and dashes implied in the wedge and dash representation of the ethane molecule.

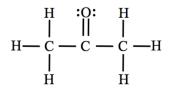
You may have noticed that we only discussed **molecular geometry** (*bond angles*) for *large molecules*; we do not categorize large molecules by "*molecular shape*" as we did for small molecules.

The reason for this is that _____bonds can "____" and therefore large molecules are **always** *changing their shape*.


It is important to understand that although single bonds are capable of rotation, *the bond angles around any particular atom do not change upon rotation*.

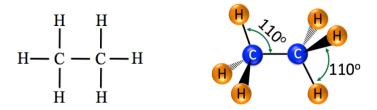
Only single bonds freely rotate; because of the nature of *double* and *triple bonds*, they *do not* rotate.

Another example for the geometry of large molecules: Consider the line bond structure of an *ethanol* molecule (shown on the right).


н— с — с — ё — н | | | | | | | |

What is the bond angle for the bonds coming from *the oxygen atom* in an ethanol molecule?

Understanding Check: Predicting Bond Angles in Large Molecules

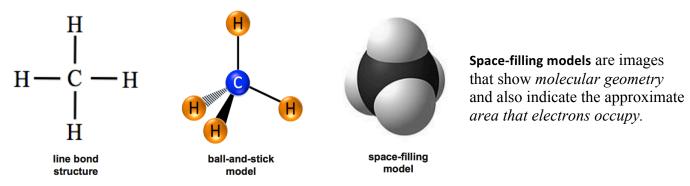

Consider the line bond structure of an acetone molecule:

- a) What are the bond angles around the left-most carbon atom?
- b) What are the bond angles around the carbon atom in the middle of the molecule?
- c) What are the bond angles around the right-most carbon atom?

Reflection and Looking Forward

You have seen how the connectivity of atoms shown in structural formulas, such as line bond structures, can be used to determine molecular geometries (bond angles). For example:

The molecular geometries are quite important because the observed (macroscopic) properties of a molecular compound are related to its *nanoscopic* structure. The *nanoscopic* structure of molecules includes details such as the kind of atoms, the pattern in which they are *bonded* to each other, the molecular geometry, and *how the electrons are distributed within the molecule*.

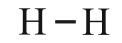

Throughout the remainder of this course, you will see how the nanoscopic details of a molecule will affect observed, macroscopic properties such as biological effects, melting and boiling temperatures, rates of evaporation, and the ability of one substance to dissolve another substance.

The Distribution of Electrons in Molecules

Molecular geometry plays a major role in *how the electrons are distributed in molecules*.

The **electron distribution** is a major factor that determines the chemical and physical _____ of molecular compounds.

• For example, consider two molecules that are quite similar in size - CO₂ and H₂O. Both molecules contain three atoms, however at room temperature they are in different phases; CO₂ exists as a gas, whereas H₂O exists as a liquid (water).


Representations of Methane (CH₄)

Here is a new concept: *the electrons are* _____ *molecules.*

- Sometimes electrons spend ______ time in one particular region of the molecule giving that region *additional ______charge*.
- Sometimes a particular region of a molecule is *electron* ______, giving that region of the molecule *additional* ______ *charge*.

The existence of this *uneven charge* within a molecule is a major factor that makes the **properties** of molecules such as CH₄, CO₂, and H₂O, quite different.

Let's first consider the H₂ molecule:

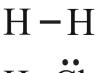
The two electrons in this *covalent bond* are "*shared evenly*" by the hydrogens.

The electrons do not spend more time, on average, closer to any one of the two hydrogen atoms.

This is because the bond is between ______ *atoms*; the electrons are equally attracted to **each** of the positively-charged hydrogen nuclei.

When electrons are shared between *like atoms*, such as in H_2 , they are, on average, **evenly** distributed between the atoms.

Next, let's consider the HCl molecule:

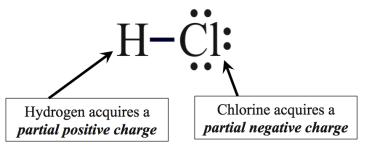

The two electrons in the H-Cl *bond* are *not* shared *equally* by the chlorine and hydrogen atoms.

The shared electrons spend, on average, a bit more time nearer the chlorine than the hydrogen.

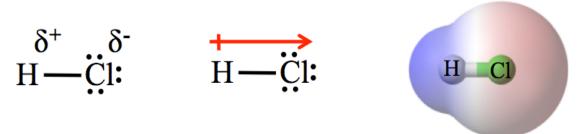
This is because the bond is between ______ atoms (chlorine vs. hydrogen).

• The shared electrons happen to be more strongly attracted to the chlorine than they are to the hydrogen.

within



When electrons in bonds are **evenly** shared, as is the case for *like atoms* (such as H_2), we call the bond a _______



When electrons in bonds are not equally shared, as is the case for *un-like atoms*, we call the bond a ______.

Scientists and engineers use the term _______ to describe this physical state that results when there is a separation of charge over a short distance such as the length of a chemical bond.

Representations of Bond Polarity in HCl

The line bond structure (above, left) uses the Greek lowercase letter delta (δ) to indicate a *partial positive charge* (δ^+) or a *partial negative charge* (δ^-) near the appropriate atoms.

Another way to show bond polarity and partial charge is to use the **dipole arrow** (above, middle).

• When using *dipole arrows*, the arrow points to the partial negative charged region and a crossed line (looks like + on the end of the arrow) is used to indicate the partial positive charged region.

The space-filling model (above, right) not only shows the region that the molecule's electrons occupy, but is also shaded to indicate the *electron distribution*.

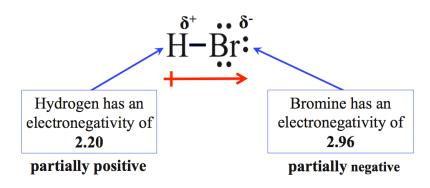
- The area where electrons spend more time and therefore has a partial negative charge is shaded red.
- The area that is electron deficient has a partial positive charge and is shaded blue.

Electronegativity

The relative ability of an atom in a bond to attract electrons is called its ______.

- The *more* electronegative atom in the bonded pair will have a stronger attraction to the shared electrons, the electrons will spend a bit more time in the vicinity of that atom, therefore the atom will have a **partial negative charge**.
- The *less* electronegative atom in the bond will have a **partial positive charge**.

Electronegativity Values			
	B	С	
	2.04	2.55	З.


2.20																	
Li	Be											В	С	N	0	F	Ne
0.98	1.57											2.04	2.55	3.04	3.44	3.98	
Na	Mg											AI	Si	P	S	CI	Ar
0.93	1.31											1.61	1.90	2.19	2.58	3.16	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.82	0.95	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.60
Cs	Ba	•	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.79	0.89		1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	1.62	1.87	2.02	2.0	2.2	2.2
Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
0.7	0.9																
• • •		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
- La	nthanoids	1.1	1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.1	1.22	1.23	1.24	1.25	1.1	1.27	
	A	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	Actinoids	1.1	1.3	1.5	1.38	1.36	1.28	1.13	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3	

Source: Wikimedia Commons, Author: Adblocker, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

Note that there is a **periodic trend** in electronegativity values of the **s**- and **p**-block elements; electronegativity increases going from left to right (in a row) and bottom to top (in a column).

You can determine which atom in a polar bond is *partially positive* and which is *partially negative* by comparing the **electronegativity values** of the two atoms.

Example: Consider the line bond structure of hydrogen monobromide (HBr).

Understanding Check: Bromine monofluoride (BrF) exists as a brown gas and is used as an algaecide, fungicide, and disinfectant in some industrial applications. Draw the line bond structure of bromine monofluoride.

- a) Predict which atom is **partially positive** and which atom is **partially negative**.
- b) Add the δ^+ or δ^- symbols to the appropriate atom.
- c) Add a dipole arrow below the line bond structure to indicate the polarity.

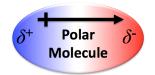
He

The **degree of bond polarization** depends on the in electronegativities between the two bonded atoms.

- - Greater differences in the abilities of the bonded atoms to attract the shared electrons results in more polarized bonds.

Example: The electronegativity of hydrogen, fluorine, and bromine are 2.20, 3.98, 2.96, respectively. Which bond is *more polarized*, the H-F or H-Br bond?

> **H-F**: The *difference* in electronegativity between F and H: 3.98 - 2.20 = 1.78 H-Br: The *difference* in electronegativity between Br and H: 2.96 - 2.20 = 0.76


Since there is a greater difference in electronegativity between F and H vs. Br and H, the H-F bond is _____ polarized than the H-Br bond.

Summary of Bond Polarity

We can classify covalent bonds as being *either* _____ or _____

- Polar bonds occur because of *unequal sharing* of electrons in covalent bonds when two *un-like* atoms (such as H-Br or H-Cl) are bonded together.
- Nonpolar bonds occur when the electrons are shared evenly between two *like* atoms (such as ٠ H-H or F-F).

The Polarity of Molecules

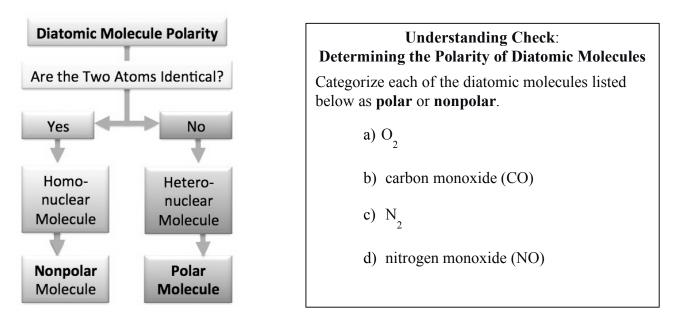
Similar to the concept of *bond polarity*, when electrons are not symmetrically distributed **in a molecule**, it results in a **polar** ; a molecule with one end that has a partial negative charge and one end that has a partial positive charge.

The existence and degree of polarity (strength of the dipole) in molecules has implications in many of the chemistry concepts that you will learn throughout this course.

For example, one type of force responsible for attracting molecules *to other molecules* that is, in part, responsible for whether the molecules exist close to each other in the liquid or solid phase instead of the gas phase is called the **dipole-dipole force**.

The partially positive (δ^+) end of one molecule's dipole is attracted to the partially negative (δ^-) • end of another molecule's dipole (and vice versa) by an electrostatic attraction as illustrated below.

In this video, you will learn how to determine if a **molecule** is *polar* or *nonpolar* based on *both* the existence (or not) of **and** its molecular .


I will show you a method for determining the polarity of a molecules for each of our molecular size categories (diatomic, small, and large molecules).

The Polarity of *Diatomic* Molecules

Molecular Size Category	Description	Example(s)			
Diatomic Molecule	Molecule contains only two atoms	H ₂	HCl		

Since diatomic molecules contain *only one bond*, the polarity of the molecule depends only on the polarity of that bond.

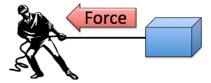
- A ______ *diatomic molecule*, such as H₂, contains *like*-atoms and a *nonpolar* bond, therefore the molecule is ______.
- A ______ *diatomic molecule*, such as HCl, contains two *un-like* atoms and a *polar* bond, therefore the molecule is ______.

The Polarity of Small Molecules

Molecular Size Category	Description	Example(s)			
Small Molecule	Molecule has <u>one</u> central atom with <u>all</u> other atoms bonded to the central atom	CH ₄	H ₂ O		

Small molecules contain more than one bond.

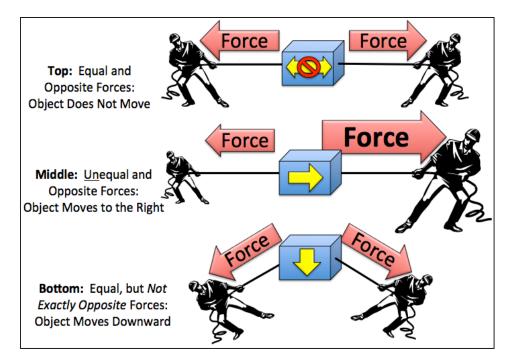
The *individual bonds within a molecule* can be polar and/or nonpolar.


Just because a small molecule contains polar bonds does not necessarily mean that it is a polar molecule.

In order to determine if a small molecule is polar, we must look at what happens when we <u>add</u> up all of the dipoles.

Dipoles are physical quantities that not only have a magnitude (amount of charge), but also have a direction.

An analogous physical quantity that you are familiar with is *velocity*. When you drive your car, to completely describe your path you would use both the *speed* (miles per hour) and the *direction* you are traveling.


Another physical quantity with both magnitude and direction is a **force**. When you pull on an object, how fast and where the object moves depends on how hard you pull *and* in what *direction* you pull.

Quantities with both magnitude and direction are called vector quantities.

Covalent bond electric dipoles are vector quantities; they have both *magnitude* (based on differences in electronegativity of the bonded atoms) and *direction* (based on bond angles).

Before we discuss "*adding up*" dipole vectors, let's *add up* some vector quantities of which you have prior knowledge. We will consider adding a couple of force vectors:

Top: Two equal tensions (represented by the red vector arrows of the same length) are exerted in opposite directions. The blue box does not move because the forces are "balanced" or "cancel"; they *add up to zero*.

Middle: The two tension forces are in opposite directions, however the force pulling to the right is larger (represented by a larger vector arrow). The blue box moves to the right because the forces are not "balanced" and do not "cancel" - they **do not** add up to zero.

Bottom: The two tension forces are equal but they are <u>not</u> oriented in exactly opposite directions. The blue box moves downward because the forces are not "balanced" and do not "cancel" - they **do not** add up to zero.

To determine if a *small* molecule is polar:

We must look at what happens when we _____ up all the dipoles.

Example: CO₂

There are 2 polar bonds in a CO₂ molecule.

This results in two_____.

- The oxygens have a ______ negative charge.
- The carbon has a partial positive charge.

Since the molecule is ______, the dipoles cancel each other and the molecule is ______.

• All *symmetric* small molecules are *nonpolar*.

Let's look at what happens when we add up all the dipoles in another molecule:

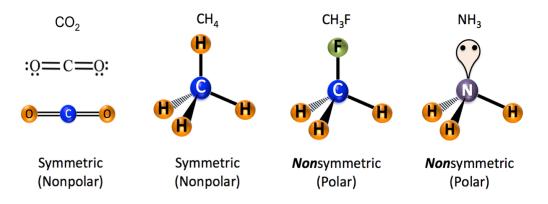
Example: H₂O

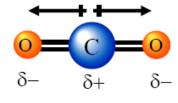
There are 2 polar bonds in an H₂O molecule.

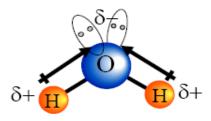
This results in two dipoles.

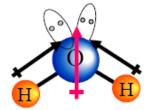
- The oxygen has a partially negative charge.
- The hydrogens have a partially positive charge.

Since the molecule is <u>not</u> symmetric, the dipoles *do not cancel* each other and the molecule is

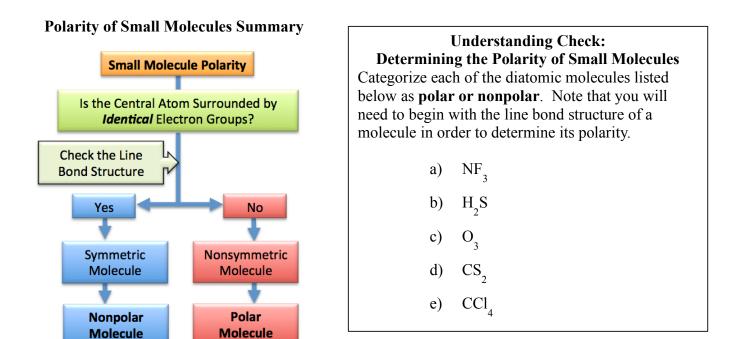

Since dipoles in *nonsymmetric* molecules do not cancel each other out, they *add up* to yield a **molecule with a dipole**.


Nonsymmetric small molecules with polar bonds are polar molecules.

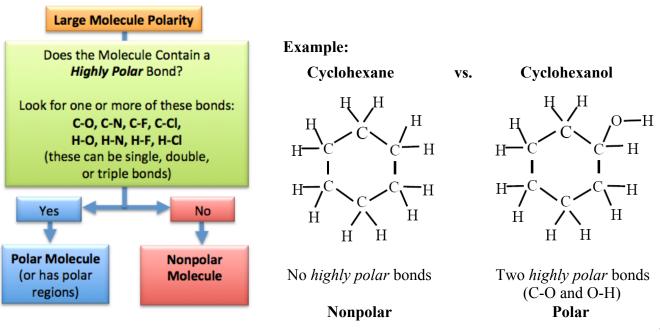

General Rule to Know if a molecule is Symmetric or Nonsymmetric:


Symmetric molecules have the *central atom* surrounded by _____

Examples of symmetric and nonsymmetric molecules:



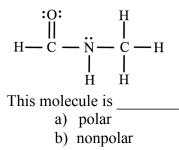
electron groups.


The Polarity of Large Molecules

Molecular Size Category	Description	Example(s)	
Large Molecule	Larger than <i>Small Molecule</i> ; there is <u>not</u> just one single, central atom with <u>all</u> the other atoms bonded to it	C ₃ H ₈	

In this course, we will be working with large molecules (organic and biochemistry).

Large molecules will be considered polar (or have polar regions) if they have _____


• The *important highly polar covalent bonds*, especially in organic and biochemistry, are those in which either **hydrogen** or **carbon** atoms are covalently attached to **nitrogen**, **oxygen**, **fluorine**, or **chlorine** atoms.

bonds.

Understanding Check: Determining the Polarity of Large Molecules

The compound shown below has been used to kill any insect larvae present in cereal and dried fruit.

Formal Charge

There is one more phenomenon that results in the uneven distribution of charge.

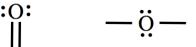
We will use the concept of "_____" to account for electrically-charged regions within molecules (and polyatomic ions).

The *formal charge* concept involves identifying ______ in molecules (or in polyatomic ions) that have an *excess or deficiency of electrons*.

- An excess of electrons on a particular atom means that there are more electrons in the vicinity of an atom than there are protons in the atom. If there is one extra electron in the vicinity of a particular atom, the *formal charge* of the atom would be 1-.
- Conversely, when we say that an atom is electron deficient, this means that there are fewer electrons in the vicinity of a particular atom than there are protons in the atom. If an atom has a deficiency of one electron (one more proton than electrons), the formal charge of the atom would be 1+.

What Do You Need to Know About Formal Charge?

We will soon be focusing on organic biomolecules. Biomolecules consist primarily of C, H, O, and N.

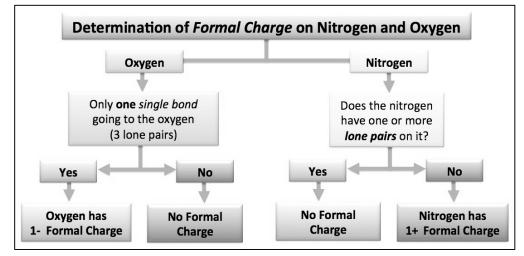

- In the compounds that you will come across in this course, *carbon* and *hydrogen* atoms *will never* have a formal charge.
- Oxygen and nitrogen may or may not have a formal charge.

I will only need you to be able to determine the formal charge on two elements -

_____ and _____.

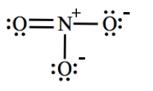
1) The Formal Charge on Oxygen:

- Oxygen has a formal charge of 1- when it has *just ______ single bond* (three lone pairs).
 - <u>ö</u>:
- In *all other cases that we discuss in this course*, oxygen will **not** have a formal charge (formal charge = zero).
 - Examples:


2) The Formal Charge on Nitrogen:

• Nitrogen will have no formal charge when it has one or more lone pairs on it.

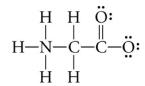
$$-\ddot{N}$$
 $-\ddot{N}$ $:N\equiv$


• In _____ *other cases*, nitrogen has a 1+ formal charge.

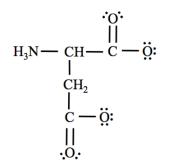
Determination of the formal charge of oxygen and nitrogen is summarized in the thought-map flowchart shown below.

OPTIONAL: If you are interested in learning the details of how formal charges are assigned to oxygen, nitrogen, and other atoms based on their bonding patterns, you can find that information in Appendix 3 of your textbook.

Example: The line bond structure of the nitrate ion (NO_3) is shown below. Add the *formal charge* (as a superscript) to the line bond structure next to any **oxygen** or **nitrogen** atom that has a non zero formal charge.



The nitrogen has *no lone pairs*, therefore it has a formal charge of 1+ (or +).


The oxygens below and to the right of the nitrogen have *just one single bond*, therefore they have a formal charge of **1**- (or -).

The oxygen to the left of the nitrogen *does not have just one single bond* (it has a *double bond*), therefore it has no formal charge (formal charge = zero).

Understanding Check: The line bond structure glycine, an amino acid present in many proteins, is shown below. Assign formal charges to the nitrogen and each oxygen atom in this compound.

Understanding Check: Aspartic acid is one of the 20 common amino acids that make up the proteins in our bodies. The condensed structure of the aspartic acid is shown below. Add the formal charge (as a superscript) next to any *oxygen or nitrogen atom* in the condensed structure that has a non zero formal charge.

Summary

In the last two videos, you learned two ways to predict the distribution of charge:

Molecular Polarity: Because of the unequal sharing of electrons, regions of a molecule can have **partial charge**. These charged regions have a *partial positive charge* (δ^+) or *partial negative charge* (δ^-).

Formal Charge: A region in the vicinity of a *particular atom* in a compound can have *formal charge because of an excess or deficiency* of electron(s) at that atom.

Both the polarity and presence of formal charges in molecules are important in understanding how *compounds interact with each other*, and also in understanding the forces within large biomolecules such as DNA, RNA, proteins, and carbohydrates. These forces are crucial for the biological molecules maintaining their shape and biological function.

Noncovalent Interactions

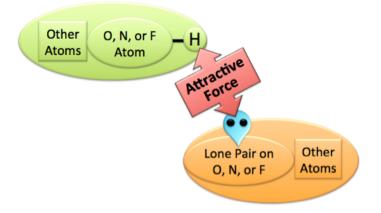
Ionic compounds exist as crystalline solids at room temperature because the ions are held together by **ionic chemical bonds**.

Molecular compounds can also exist as crystalline solids.

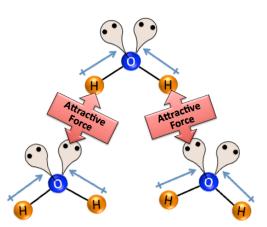
• Example: H₂O (ice or snow flakes)

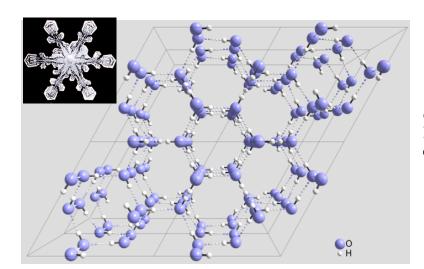
 H_2O molecules are not ions, so what forces are responsible for holding H_2O molecules, or other molecules, together in their solid states?

The answer is that there are *electrostatic attractive forces* called _ that attract molecules to other molecules.


Noncovalent interactions are quite different from the *covalent bonding forces* that are present within molecules and polyatomic ions.

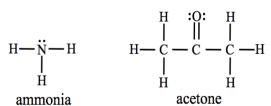
- _____ *bonding forces* result from shared electrons.
- *Noncovalent interactions*, as the name implies, *do not* involve the sharing of electrons; they are strictly electrostatic attractions.


In this video, you will learn about five types of noncovalent interactions.


1) Hydrogen Bonding

Hydrogen bonding is the result of the electrostatic attraction *between* the partial positive charged end of a *particularly strong polar bond* (O-H, N-H, or F-H) and the negative charge of a lone pair of electrons on a very electronegative atom (O, N, or F).

Example: *Hydrogen bonding* is the major force responsible for H_2O , a relatively small and light molecule, existing in the liquid phase instead of the gaseous phase at room temperature.

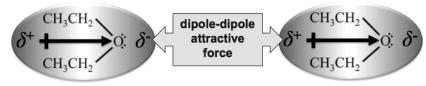


On the Left: Hydrogen bonds (as dashed lines) in a ball and stick model of an ice crystal.

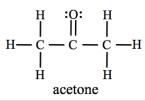
Understanding Check:

The line bond structures of ammonia and acetone are shown below:

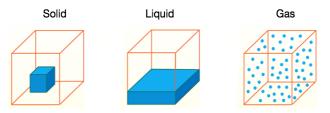
- a. Can hydrogen bonding occur between two ammonia molecules?
- b. Can hydrogen bonding occur between two acetone molecules?
- c. Can hydrogen bonding occur between an ammonia molecule and an acetone molecule?


2) Dipole-Dipole Forces

Polar molecules are attracted to other polar molecules by a type of noncovalent interaction called the **force**.


The partially positive (δ^+) end of one molecule's dipole is electrostatically attracted to the partially negative (δ^-) end of another molecule's dipole (and vice versa).

Example: Diethyl Ether



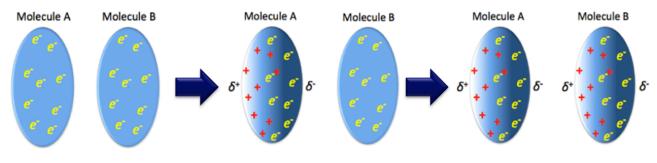
Understanding Check:

- a. Can a dipole-dipole force occur between two H₂O molecules?
- b. Can a dipole-dipole force occur between two methane (CH₄) molecules?
- c. Can a dipole-dipole force occur between two acetone molecules?

It is *noncovalent interactions* that hold molecules together such that they exist in the solid or liquid phases instead of the gaseous phase.

Whether a substance exists in the gas, liquid, or solid phase is determined by a ______ between noncovalent interactions (working to keep the particles close to one another) and temperature (kinetic energy working to distribute the particles randomly in their container).

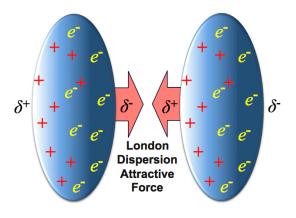
- If the noncovalent interactions are dominant, then the substance will exist in the solid or liquid phase.
- If the temperature/kinetic energy can overcome the noncovalent interactions, then the substance will exist in the gaseous phase.


It was observed that nonpolar molecules such as CO_2 , O_2 , and N_2 , which are *not capable* of interacting through dipole-dipole forces or hydrogen bonding, can be cooled to temperatures at which they exist in the liquid and solid phases.

In 1930, Fritz London, along with R. Eisenschitz, came up with a model to explain this observation.

3) London Dispersion Forces

The explanation is based on our third type of *noncovalent interaction*, which came to be known as **London dispersion forces**, named in honor of Fritz London.

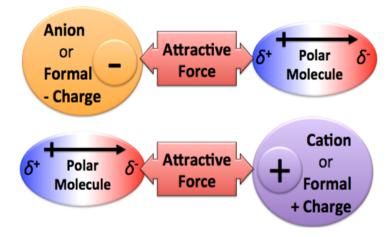

London dispersion forces are caused by an "instantaneous" dipole in one molecule ______ the formation of a "temporary" dipole in another molecule.

molecules, polar and nonpolar, contain electrons and will therefore be attracted to each other through London dispersion forces.

The ______ a molecule is, the easier (lower in energy) it is to polarize its electrons, and therefore, **the stronger is** its London dispersion force interactions.

• This trend can be observed by noting the boiling points of the molecules in the table below:

Effect of Molecular Size on London Dispersion Forces				
Molecule Name	Condensed Structure	Boiling Point (°C)	Phase at Room Temperature	
methane	CH ₄	-164	gas	
ethane	CH ₃ CH ₃	-89	gas	
propane	CH ₃ CH ₂ CH ₃	-42	gas	
butane	CH ₃ CH ₂ CH ₂ CH ₃	0	gas	
pentane	$CH_3CH_2CH_2CH_2CH_3$	36	liquid	


Understanding Check:

- a. Can London dispersion forces occur between two CBr₄ molecules?
- b. Can London dispersion forces occur between two H₂O molecules?
- c. Which of the following substances is predicted to have the higher boiling point:

nonane (CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃)

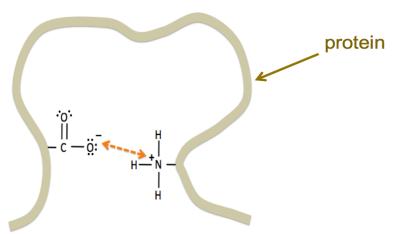
4) Ion-Dipole Interactions

An **ion-dipole interaction**, as the name implies, is the electrostatic attractive interaction *between* an *ion* (or formal charge) *and* the ______ of a polar molecule.

The attraction could be *between* an **anion** (or negative formal charge) *and* the partially positive end (δ^+) of a dipole, or vice versa, *between* a **cation** (or positive formal charge) *and* the partially negative end (δ^-) of a dipole.

The attraction could be *between* an **anion** (or negative formal charge) *and* the partially positive end (δ^+) of a dipole, or vice versa, *between* a **cation** (or positive formal charge) *and* the partially negative end (δ^-) of a dipole.

Examples: Sodium cations or chloride anions interacting with polar water molecules.


Understanding Check:

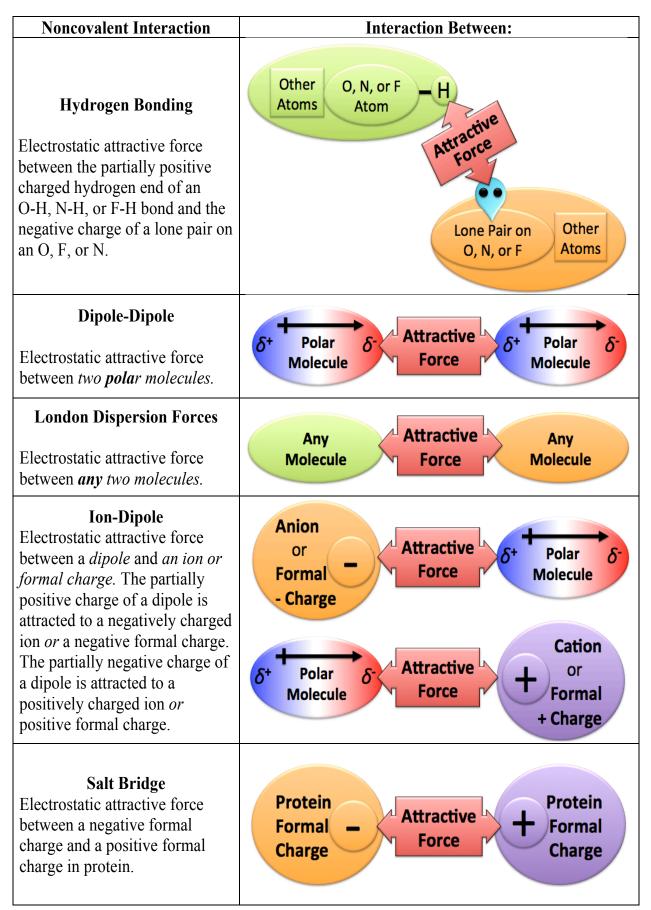
- a. Can an ion-dipole interaction occur between ammonium (NH_4^+) and H_2O ?
- b. Can an ion-dipole interaction occur between bromide (Br⁻) and I_2 ?

5) Salt Bridge Interactions

A **salt bridge** is the electrostatic attractive interaction *between* a negative formal charge *and* a positive formal charge in protein.

Salt bridges are one of the noncovalent interactions that are responsible for the way a protein *folds up onto itself* to give it the shape that is necessary for it to perform its biological function.

Summary of Noncovalent Interactions


In this video, you learned about *five* types of **noncovalent interactions**.

When these interactions occur between molecules (as opposed to monatomic or polyatomic ions), they are sometimes referred to as **intermolecular forces**.

Noncovalent interactions cause molecules to be *attracted to each other* and can result in molecular compounds existing as liquids or solids.

In the case of large molecules or polyatomic ions that can *fold back upon themselves*, noncovalent interactions can occur between two regions *within an individual particle*.

Summary of Noncovalent Interactions

